A New AML Treatment Target

A New AML Treatment Target

The blood cancer acute myeloid leukemia (AML) is driven by leukemic stem cells (LSCs) that develop abnormally and proliferate excessively, until they ultimately displace healthy blood stem cells from the bone marrow. LSCs typically resist chemotherapy, so better strategies are needed to eliminate them. In a study published online on May 17 in the Journal of Experimental Medicine, researchers led by Ulrich Steidl, M.D., Ph.D., describe a promising target: a signaling protein called interleukin-1 receptor accessory protein (IL1RAP), which is often highly expressed on the surface of leukemic stem cells but is largely absent from normal blood stem cells. IL1RAP turned out to be crucial for leukemic stem cell survival. When AML cells (including leukemic stem cells) were isolated from patients, the researchers found they could kill those cells by targeting IL1RAP using techniques including anti-IL1RAP antibodies and gene deletion. Unexpectedly, the researchers found that IL1RAP has a much broader function in AML cells than previously realized: the protein, simultaneously stimulated multiple leukemia-promoting molecules, which makes therapeutically targeting IL1RAP particularly attractive. Dr. Steidl is the Diane and Arthur B. Belfer Faculty Scholar in Cancer Research, director of the Stem Cell Isolation and Xenotransplantation Facility and a professor of cell biology and of medicine at Einstein and associate chair for translational research in oncology at Montefiore.