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Regulation of gene expression is key determinant to cell

structure and function. RNA localization, where specific

mRNAs are transported to subcellular regions and then

translated, is highly conserved in eukaryotes ranging from

yeast to extremely specialized and polarized cells such as

neurons. Messenger RNA and associated proteins (mRNP)

move from the site of transcription in the nucleus to their final

destination in the cytoplasm both passively through diffusion

and actively via directed transport. Dysfunction of RNA

localization, transport and translation machinery can lead to

pathology. Single-molecule live-cell imaging techniques have

revealed unique features of this journey with unprecedented

resolution. In this review, we highlight key recent findings that

have been made using these approaches and possible

implications for spatial control of gene function.
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Introduction
Localization of messenger RNAs (mRNAs) is a conserved

mechanism throughout evolution in which gene expres-

sion is coupled to its site of function within the cell. This

conservation is effected through proteins that have co-

evolved to carry these mRNAs to their destinations in a

variety of specialized cells and organisms. Although most

research has focused on describing mRNA movement,

less is known about the unseen actors in the process, the

dynamic and changing protein complexes that manage

this entire journey from birth to death.
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The purpose of this entire process is to regulate the

production of proteins in the cell in the place where

they function. Many of these proteins are localized

post-translationally, asymmetric subcellular distribution

of protein is efficiently accomplished by on-site acti-

vation of translation after the mRNA is transported and

localized in a dormant state. This spatial distribution is

a key determinant for many aspects of cell structure

and function [1,2]. It has been revealed that a large

number of transcripts localize to specific subcellular

compartments in polarized cells. High-resolution fluo-

rescence in situ hybridization (FISH) during early

Drosophila embryogenesis showed that over 70% of

mRNAs studied (20% of total genes) localize to differ-

ent subcellular compartments, where they usually colo-

calize with the proteins they encode [3]. Although this

spatial distribution of gene expression was originally

thought to be a unique feature of highly specialized

and polarized cells such as neurons and germ cells, it

has been demonstrated that a subset of mRNAs local-

ize to cell protrusions and focal adhesions in migrating

fibroblasts [4–8]. High-resolution microscopy has

shown that mRNAs encoding inner-membrane proteins

are confined at this membrane in E. coli [9,10�]. This

indicates that prokaryotes as well as eukaryotes can

spatially regulate gene expression modulating the des-

tiny of mRNAs and cell function. Defects in RNA

localization machinery have been implicated in disor-

ders ranging from neurodevelopmental and neurode-

generative diseases to cancer [11,12].

In order to understand how RNA moves within the cell, it

was imperative to develop high-resolution microscopy

technologies directed to follow single molecules of

mRNA in living cells from the time they are synthesized

in the nucleus until the time they are degraded in the

cytoplasm. Intracellular localization of mRNAs was origi-

nally observed using in situ hybridization in fixed samples

[5,13]. It remains the standard tool for examining the

distribution of mRNAs in cells, tissues, and even entire

organisms at a specific time point. The direct observation

of mRNA using the MS2 system in living cells (Box 1)

[14–17,18��] provided the dynamics important for ascer-

taining mechanism. Recent advances in live-cell imaging

[19��] have demonstrated that it is possible to follow the

mRNA and associated proteins, thereby providing

insights into various regulatory steps in the journey.

This Review highlights recent discoveries concerning how
mRNPs carry genetic information from the genes to various
locations within the cell in order to target protein synthesis to the
right place and at right time.
www.sciencedirect.com
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Box 1 The MS2 system.

The MS2 system has been successfully used to visualize mRNAs in

living cells and whole organisms due to its simplicity and high

sensitivity [14,17,18��,54,89,90]. This binary system relies on tagging

RNA with fluorescent proteins (FPs) in vivo.?It is based on the high-

affinity association between a specific and unique RNA stem-loop

structure derived from the MS2 bacteriophage genome regulatory

element and the bacteriophage MS2 coat protein (MCP) fused to a

FP [14,91]. The amplification of the fluorescent signal is achieved by

the generation of multimerized MS2 stem-loops or binding sites

(MBS) inserted in the gene of interest that can be recognized by an

increase number of molecules of MCP-FP, hence, allowing the

visualization of single-molecules in living cells due to an increase in

the signal-to-noise ratio [92]. Similar to the MS2 system, the inter-

action between the Pseudomonas aeruginosa PP7 bacteriophage

coat protein (PCP) and their cognate RNA stem-loop has been

characterized [91,93] and has been also used for visualization of

single-molecule mRNAs in living cells [73��,76��,77��,94]. MS2- and

PP7-engenieried transcripts can be used simultaneously for two-

color imaging of different mRNA species allowing the study of traf-

ficking dynamics for different mRNA species within the same cell,

thus expanding what can be studied in living cells.
Messenger RNPs control the journey from
birth to death
After being born in the nucleus, all molecules of mRNAs

start a journey to the site(s) of translation and degradation

in the cytoplasm (Figure 1). Transcription is the first step

of gene expression regulation. Single-molecule live-cell

imaging techniques have revealed that gene promoters

stochastically transition between active and inactive tran-

scription states generating bursts of nascent transcripts

[20–22]. It has also been shown that these promoter

sequences can couple transcription with translation and

degradation [23–25,26�,27�]. This allows mRNAs to be

‘flagged’ for sorting to specific subcellular locations from

the moment of their birth in the nucleus. A large number

of proteins associate with pre-mRNAs to promote crucial

modifications such as the addition of the cap structure to

the 50-end by cap-binding protein, the addition of poly(A)

to the 30-end by polyadenylation proteins, and the depo-

sition of the exon junction complex (EJC) proteins with

the removal of introns during splicing [2,28]. The associ-

ation of these and other RNA-binding proteins (RBPs)

with the transcript during these events, and when the

mRNA is exported to the cytoplasm, is essential and

directs the mRNA to its next destination [1,29]. For

instance, in Drosophila oocytes, splicing creates the

spliced oskar localization element (SOLE) that together

with EJC deposition mediate proper mRNA transport to

the posterior pole [30–32].

By observing the mRNA tagged with MS2, we can divine

how the movement occurs. Surprisingly, most of the

movement is by diffusion. Messenger RNPs exhibit

Brownian movement and disperse throughout the entire

nucleus before they exit, even when the transcription site

(TS) is located near the nuclear periphery [33,34]. Once
www.sciencedirect.com 
the mature transcript has been released from the TS it

moves randomly until it finds nuclear pores in a time

frame of a few minutes [35–37]. The nuclear pore com-

plex (NPC) mediates nucleo-cytoplasmic transport

through the nuclear envelope. A superregistration

approach using fluorescence microscopy revealed that

the kinetics of mRNP export in mammalian cells includes

three-steps: docking (80 ms), translocation (5–20 ms), and

release (80 ms) [37]. Remarkably, mRNPs remain docked

at the nuclear basket for a period of time indicating a rate-

limiting step possibly related to quality control [37–39].

This would allow crucial protein rearrangements before

export. In budding yeast, mRNAs scan the nuclear

periphery before being exported, presumably by a recep-

tive pore complex [40�]. This scanning behavior is defec-

tive in nuclear basket protein MLP1/2 mutants that

shortens the docking time and releases the mRNAs

before they can export. It has been shown that not all

pores are equally active [37,38], however, pores transport-

ing b-actin mRNA are repeatedly active over time [41�].
Export rate is influenced by mRNPs involved in splicing,

alternative polyadenylation and nuclear surveillance as

well as the length of the transcript (reviewed in Refs.

[29,42,43]). For instance it has been shown that unspliced

mRNAs are exported very inefficiently as the recruitment

of export factors may be faulty. Export directionality is

achieved by mRNP remodeling as the mRNA moves

through the NPC [40�,44�]. The nuclear export factor 1

(NXF1) and NTF2-related protein 1 (NXT1) interact

with different adaptor proteins mediating sequential

mRNA maturation and export [45]. It has been suggested

that in neurodegenerative disorders, where deposition of

aggregates of misfolded proteins accumulates in the cyto-

plasm, nucleo-cytoplasmic RNA export could be affected

due to a sequestration and mislocalization of export/

import factors [46].

The NPC may not be the only nucleo-cytoplasmic exit

pathway. In Drosophila neurons, large mRNP complexes

appear to leave the nucleus via budding [47,48], a similar

mechanism previously shown for nuclear exit of herpes-

type virus [49,50].

Upon arrival into the cytoplasm, the mRNP undergoes

rearrangements that promote its journey toward its bio-

logical destiny. The mRNP composition is remodeled

near the nuclear envelope before cytoplasmic release.

For instance, Mex67p is removed from the mRNP

complex presumably preventing further interaction of

the now cytoplasmic mRNA with the pore complex in

budding yeast [44�]. The now cytoplasmic mRNP may

gain additional factors that control its mobility and

further localization (reviewed in Refs. [29,43]). In addi-

tion to RBPs, noncoding RNAs and microRNAs might

be components of these mRNPs [51]. In the cytoplasm,

the mRNA movements have a directional component.

The mRBPs may directly or indirectly bind to motor
Current Opinion in Cell Biology 2017, 45:38–46
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Figure 1
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Messenger RNPs control the journey from birth to death. Dynamic association with RNA-binding proteins regulates the journey of an mRNA from

transcription in the nucleus to translation and degradation in the cytoplasm. In the nucleus, pre-mRNAs are capped, spliced, cleaved and

polyadenylated co-transcriptionally but then diffuse to nuclear pore complexes. Quality control mechanisms ensure that only properly processed

mRNPs are remodeled and exported to the cytoplasm, where they undergo a series of diffusional and transported steps. Continuous mRNA

remodeling allows proper RNA transport and localization to the subcellular sites of translation and degradation. Dotted orange arrows represent

communication between the cytoplasm and the nucleus.

Super registration imaging can reveal these mRNA-protein interactions [95].
proteins (i.e., kinesins, dyneins and myosins) to form

high molecular weight mRNP motor complex(es) [29].

In S. cerevisiae, ASH1 mRNA is bound to She2p, which in

turn allows the binding of She3p and Myo4p (myosin) to

the complex. Once bound, Myo4p transports ASH1
mRNA to the daughter cell along actin filaments

[52,53]. Single-molecule live-cell imaging and tracking

analysis have revealed dynamics of mRNAs as they

move through the cytoplasm. The movement of mRNAs
Current Opinion in Cell Biology 2017, 45:38–46 
can be segmented into stationary, corralled, diffusive,

and directed transport [54]. Similar to the nucleus,

mRNAs are predominately governed by diffusion move-

ment in the cytoplasm [55�,18��]. However, they are

continually subjected to cycles of diffusion, direct trans-

port and anchoring as shown in neurons by Hidden

Markov Modeling (HMM) [56]. The diffusion coeffi-

cient in cytoplasm is faster than in the nucleus because

the environment is less restrictive. RNA transport is
www.sciencedirect.com
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biased by molecular motors that mediate longer trajec-

tories through direct association with the cytoskeleton

[57] and hence bring mRNAs into subcellular regions

where they are more likely to anchor awaiting the right

time to be translated. The ability of some mRNAs to

become localized and translated at specific regions has

profound implications for cell structure and function.

The best example of this is the neuron. Messenger

RNPs have to travel from the cell body to synapses that

are far away, sometimes meters, to be locally activated to

synthesize proteins at a precise moment. This mecha-

nism is the basis of learning and memory [58]. For

instance, b-actin mRNA faces this logistic problem in

hippocampal neurons by continuously assembling and

disassembling large mRNA–protein complexes while

traveling toward the base of activated dendritic spines

[18��,59��,60��]. It has been shown that diffusion of

b-actin mRNA in neurons is slower than in fibroblasts

and 10% of mRNAs are actively transported with a mean

speed of 1.3 mm/s, equivalent to the assembly with a

microtubule motor complex [18��]. Newly synthesized

b-actin protein occurs in activated spines [60��]. This

local production of actin protein allows enlargement of

the cell structures involved in synaptic growth and

arborization in neurons [61–64,60��]. It has been shown

that this local translation regulation of b-actin mRNA

involves translational de-repression by Src kinase-medi-

ated phosphorylation of the zipcode binding protein 1

(ZBP1) [65]. Arc mRNA (which encodes activity-regu-

lated cytoskeleton-associated protein) is also targeted to

the base of individual dendritic spines where synapse-

specific translation may occur [66]. Similarly, localization

of oskar mRNA to the posterior pole is essential for germ

cell formation during Drosophila oogenesis [67]. oskar
mRNA diffuses randomly, with only 13% being actively

transported [68]. The RNA transport toward the poste-

rior pole may be favored by a subtle bias in microtubule

orientation. Translation of oskar mRNA is repressed by

Bruno during transport [69,70] and it is only active when

it reaches the posterior pole [71,72,73��].

Innovative improvements in reagent design using rapid

live fluorescence microscopy made it possible to deter-

mine when and where single molecules of mRNAs trans-

late [73��,74��,75��,76��,77��,78��] (Figure 2a,b). It is now

possible, using fluorescence fluctuation spectroscopy

(FFS, Figure 2c), to ascertain that the association of a

specific RBP (ZBP1) with a specific mRNA (b-actin) in

living cells is anti-correlated with the assembly of ribo-

somes, hence validating its role in translational repression

and its dissociation at the periphery where actin protein

translation then occurs [19��]. It has been thought that

mRNA translation was silenced during transport in neu-

rons but recent tracking indicated that the mRNA can be

in the act of translating while moving: 20% of mRNAs are

both actively translated and transported along dendrites

at 2 mm/s [74��].
www.sciencedirect.com 
Most mRNA–polyribosome complexes (polysomes) are

diffusive in the cytoplasm [19��,74��,77��]. It has also

been shown that the association of the transcript with

the translation machinery slightly affects their mobility

[74��]. This provides another approach to determine

when and where mRNPs are translated. Tracking of

thousands of mRNA-ribosome trajectories per cell

showed that ribosome load slightly slowed down highly

translating mRNAs in fibroblasts [55�] (Figure 2d). For

endoplasmic reticulum (ER)-associated polysomes the

mobility is slower than for free cytoplasmic counterparts

as the nascent peptide restricts the movement to mem-

branes [74��,77��].

A combination of cell biology, biochemistry and genome-

wide approaches have showed that each mRNA is bound

by multiple RBPs and that individual RBPs can be

associated with hundreds (and possibly thousands) of

target mRNAs. Elucidation of the molecular mechanism

of RNA transport requires the identification and charac-

terization of these RBPs (and motors) as well as the cis-
acting regulatory elements present in the mRNA. Many

RBPs have been identified and deduced from sequence

homology; however, only a handful of them had been

validated in vivo. A step toward the understanding of

protein binding to mRNA is the recent global initiative to

validate RBPs (https://www.encodeproject.org/ [79�]).
The RBPs bind to localization elements (LE) located

mainly in the 30-UTR. They can be either primary

nucleotide sequences or secondary structures. Less fre-

quently these regulatory elements can be also found in

the 50-UTR, coding sequence or introns (reviewed in

Refs. [2,80]). For mRNAs coding for membrane associ-

ated proteins, the nascent peptide can target the entire

translating mRNP to its final destination: mitochondria or

the ER [81,82,74��,77��]. LEs show modularity, redun-

dancy and diversity. The combinatorial code of LEs and

their binding factors specifies the destiny of the mRNP

and its effect on cell physiology. Messenger RNAs that

code for functionally related proteins might be trans-

ported, localized and translated together. For instance,

proteins required for spindle formation and hence for

meiosis progression in Xenopus oocytes are synthesized

synchronously by mRNAs localized on spindle microtu-

bules [83]. Similarly, localization of mRNAs encoding for

proteins involved in focal adhesions controls cell adher-

ence and motility of fibroblasts [4,84,55�]. Local transla-

tion of b2B-tubulin mRNA near to microtubule tips in

axons and growth cones has been proposed to promote

neuron migration [85�]. These events described above all

have their respective RBPs controlling their localization

and translation. Some of these proteins have been identi-

fied. The cytoplasmic polyadenylation binding element

protein (CPEB) is involved in the microtubule-localized

translation activation of mRNAs encoding for spindle

proteins. The ZBP1 has been shown to be essential for

motility related mRNAs in fibroblasts and the localization
Current Opinion in Cell Biology 2017, 45:38–46
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Figure 2
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of mRNAs within dendritic compartments of neurons.

The Adenomatous polyposis coli (APC) mediates trans-

lation at microtubule ends but is an unconventional RBP

in that it does not contain known RNA binding motifs.

Regulation of mRNAs in time and space also requires

degradation. mRNA decay includes mechanisms of qual-

ity control that eliminate the synthesis of possibly toxic

peptides and that shorten mRNA half-life, changing the

abundance of a functional protein [86]. For instance,

single-molecule imaging revealed that non-sense medi-

ated decay (NMD) takes place immediately after nuclear

export [87,88]. Similar to translation, mRNA decay occurs

in the cytoplasm. It has been shown that degradation as

well as translation can be determined in the nucleus for

stress-response and cell cycle-regulated genes in mam-

malian cells and yeast [23–25,26�,27�]. This suggests that

specific mRNPs integrate and regulate events between

the cytoplasm and the nucleus. However, the mechanism

of this communication remains to be elucidated.

Conclusions
The movements of RNPs from one compartment of the

cell progressively to the next and the regulatory events

surrounding each step illustrate an elegant integration of

spatiotemporal events within a single cell. Over the last

few years, it has become clear that this mechanism defies

thermodynamics by orchestrating a highly complex pat-

tern of subcellular protein distribution, effected by spe-

cific proteins that bind to and regulate the mRNAs that

code for these cellular distributions. Single-molecule

single-cell imaging has revealed mechanistic features of

this RNA localization, transport and translation with

unprecedented spatial and time resolution. Despite

recent findings, it is still not possible to follow an indi-

vidual mRNA and the proteins with which it associates in

a living cell all the way from its site of transcription in the

nucleus to the site of translation with precise kinetics for

all the steps. Hence, although mRNA behavior is well

described in living cells much of the mechanism is still

unknown and it includes coordinated regulation by RBPs

in time and space, including non-coding RNAs. Future

efforts on the characterization and visualization of indi-

vidual mRNPs for these molecules during their journey
(Figure 2 Legend) Single-molecule live-cell imaging techniques that monito

(SINAPS, NTC and others) [74��,75��,76��,77��,78��] visualize translation in re

peptide (SunTag or FLAG) in the coding sequence and MS2 or PP7 stem-lo

antibodies that interact with SunTag and FLAG (green) allows the visualizati

with the MCP or PCP (red) bind to the 30-UTR and enables mRNA tracking.

Translating RNA imaging by the coat protein knock-off (TRICK) method [73�

of translation (red spots) and mRNAs that have never been translated (yello

stem-loops that bind distinct FPs (green and red). The FP bound to the tag

Fluorescence fluctuation spectroscopy (FFS) [19��] allows spatiotemporal qu

(red) and MS2-tagged mRNAs (green) as they pass through a femtoliter volu

labeled ribosomes (red) and mRNAs using the MS2 system (green) shows t
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will eventually explain how this is related with cellular

function and disease.
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