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motion locally along a single trajectory2,11–13. In contrast to 
MSD analysis, HMMs account for the possibility of stochastic 
switching between distinct motion states with single-step tem-
poral resolution without time averaging. This advantage of the 
HMM approach has been demonstrated for diffusing particles in 
the analysis of single-receptor dynamics confined by membrane 
corrals and undergoing transient cytoskeletal-binding interac-
tions2,11,12 and RNA-binding protein dynamics in bacteria13. 
Incorporation of Bayesian model selection into the inference 
process additionally enables objective selection of the simplest 
stochastic motion model that describes a given trajectory13. 
However, existing Bayesian HMMs are limited to modeling purely 
diffusive motion, whereas intracellular cargo often exhibit com-
binations of active transport and random diffusive motion. An 
important example is long-range transport of mRNAs in com-
plex with mRNA-binding proteins (mRNPs), driven by molecular 
motors along microtubule tracks in neuronal dendrites5.

Long-range transport of β-actin mRNP complexes to sites 
of local protein translation in neurons is implicated in synapse 
formation and plasticity during development and learning5. In 
live neuronal cultures4,5, endogenous β-actin mRNP particles 
undergo heterogeneous periods of anterograde and retrograde 
transport interspersed with pausing events, with a moderate bias 
toward anterograde transport5. Kymographs of β-actin mRNPs 
qualitatively confirmed the presence of both stationary and 
active transport phases, indicating that transport is not fully 
processive (Fig. 1a, Supplementary Fig. 1 and Supplementary 
Note 1). Extracting quantitative information from kymographs is 
a subjective process, however, particularly for short-lived phases 
of motion (Supplementary Fig. 1). Quantitative analyses of 
mRNP trajectories using MSD curves averaged within local time 
windows along each trajectory14 provided additional evidence 
for multiple phases of motion (Fig. 1b, Supplementary Fig. 2 
and Supplementary Note 1). However, the intrinsically limited  
temporal resolution of MSD-based techniques that require sliding- 
window averaging made them unable to resolve short-lived 
phases of motion, and the application of these techniques yielded 
variable results depending on user-selected parameters such as 
window size (Supplementary Fig. 2 and Supplementary Note 1).  
Although HMM-based procedures can in principle resolve  
distinct motion states with single-time-step resolution, purely 
diffusive HMM approaches resulted in erroneous annotations 
(Fig. 1c) because they neglect the possibility of active transport 
in the underlying set of motion models considered.
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information on mechanisms of intracellular transport. 
however, trajectory analysis procedures to infer complex 
transport dynamics involving stochastic switching between 
active transport and diffusive motion are lacking. We applied 
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transient transport states from trajectories of mrna-protein 
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High-resolution fluorescence imaging is routinely used to 
report on the dynamic behavior of single molecules and mac-
romolecular assemblies in diverse biological contexts including 
membrane receptor dynamics1–3, long-range mRNA transport4,5 
and chromosome segregation6. Although a variety of advanced 
particle-tracking techniques are available7–9, model-based infer-
ence procedures are needed to extract mechanistic information 
from these trajectories. Classification of local particle dynamics 
using physical motion models offers insights into subtle features 
of molecular transport such as the direction and speed of molecu-
lar motors that drive transport of intracellular cargo, as well as the 
identification of specific intracellular locations of cargo confine-
ment or transient binding interactions2,3. Because intracellular 
transport often exhibits a high degree of heterogeneity depending 
on the spatial location of cargo within the cell, combinations of 
motion models should ideally be considered in the analysis and 
annotation of single-particle trajectories.

Although kymograph and mean-square displacement (MSD) 
analyses are commonly used to characterize intracellular motion 
from particle trajectories1,10, hidden Markov modeling (HMM) is a 
powerful alternative owing to its ability to annotate heterogeneous  
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figure 1 | Particle-trajectory analysis  
methods applied to neuronal mRNPs.  
(a) Left, cultured mouse hippocampal  
neurons in which endogenous β-actin mRNA 
molecules are labeled with GFP-tagged MS2  
(ref. 5), overlaid in color with trajectories  
of tracked mRNP complexes. Center, 
enlargement of the boxed region at left.  
A transported mRNP complex and its  
associated trajectory (yellow) are shown.  
Right, kymograph of the selected mRNP  
complex along the neuronal dendrite.  
(b) Sliding-window MSD analysis of the mRNP 
trajectory in a, showing the slope (α) of a log-log plot of MSD versus time lag within sliding windows of ten-step width. The temporal sequence of 
motion states obtained using a threshold α (dotted line) to classify directed transport is illustrated by the vertical bar on the right. Inferred transport 
states and diffusive states are pink and blue, respectively, whereas the nonannotated steps of the trajectory are gray. (c) Analysis of the mRNP trajectory 
in a with a diffusive-only HMM approach13. The inferred motion model with two diffusive states (D-D) is shown at the upper left. Blue and green 
annotations correspond to the states with higher and lower diffusion coefficients, respectively. (d) Analysis of the mRNP trajectory in a with HMM-Bayes. 
The inferred motion model with one diffusive state and one transport state (D-DV) and the inferred state annotation are shown, with blue and pink 
annotations corresponding to the diffusive and transport states, respectively.

To overcome these limitations, we developed a versatile HMM 
procedure that can be applied both to diffusive switching and 
to active transport processes interspersed with random pausing 
events such as in the motor-driven transport of mRNPs. This 
HMM analysis approach requires the statistical hypothesis that 
a particle explores a finite set of diffusive and directed trans-
port motion states whose switching can be modeled as a Markov 
process. Our procedure, HMM-Bayes, models diffusive and 
directed motion states along particle trajectories and performs 
Bayesian model selection to infer the simplest stochastic motion 
model that is consistent with the observed particle displacements 
(Supplementary Figs. 3–6). The procedure can be applied to 
either a single trajectory or a set of pooled trajectories, annotat-
ing intermittent periods of diffusive and directed motion locally 
along each trajectory to reveal when and where switching between 
distinct types of motion occurs in space and time (Figs. 1d and 
2a,b). We validated our approach using simulated trajectories, 
first confirming that it performed similarly to purely diffusive 
HMMs when applied to stochastic switching between two distinct 
diffusion states (Supplementary Figs. 7–9 and Supplementary 
Notes 2 and 3). In addition, our procedure detected stochas-
tic switching between directed transport and random diffusive 
motion states (Supplementary Figs. 10–14 and Supplementary 
Note 3), whereas existing HMM approaches failed to detect trans-
port. As expected13, a minimum number of observed particle 

displacements was required to infer the presence of multiple 
motion states, and this number depended on the relative values 
of the motion parameters (Supplementary Figs. 11 and 12, and 
Supplementary Note 3).

The ability of our procedure to detect directed transport ena-
bled its application to annotate complex neuronal β-actin mRNP 
transport dynamics (Figs. 1b and 2, Supplementary Note 4, 
Supplementary Figs. 15–17 and Supplementary Videos 1–3). 
Our procedure yielded trajectories annotated with the local spatial- 
temporal dynamics of when and where each mRNP exhibited 
retrograde, anterograde or pausing motion along its trajectory 
within the cell (Figs. 1d and 2a,b), as well as the lifetime of each 
individual period of motion and population distributions of veloc-
ities, diffusion coefficients and state lifetimes across a collection 
of heterogeneous mRNP trajectories from multiple cells (Fig. 2c).  
We found that β-actin mRNPs existed on average in passive  
pausing states longer than in active transport states, and that antero-
grade transport had a higher average velocity (0.76 ± 0.45 µm/s,  
mean ± s.d.) than retrograde transport (0.58 ± 0.35 µm/s),  
with large variability in single-molecule mRNP transport rates. 
Analysis of β-actin mRNP trajectories in cells treated with KCl, 
which induced inhibition of active transport5, confirmed that  
our procedure annotated these trajectories with only a single 
diffusive state (Supplementary Fig. 18). The quantifications 
produced by our analysis procedure, combined with secondary 
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figure 2 | HMM-Bayes analysis of neuronal 
mRNPs. (a,b) β-actin mRNP trajectories inferred 
by HMM-Bayes to undergo directed transport, 
illustrated as in figure 1d. The three distinct 
motion states in b, one diffusive and two 
transport states (D-DV-DV), are depicted in blue, 
pink and orange, respectively. (c) Distributions of 
diffusion coefficients, velocity magnitudes and the 
mean lifetimes of diffusive and transport motion 
states as inferred by HMM-Bayes across 22 β-actin 
mRNP trajectories (from 13 cells) that undergo 
switching between diffusive motion and directed 
transport. The diffusion coefficient distribution is 
over all states, including both diffusive states and 
transport states, observed across all trajectories. 
The velocity magnitude distribution is over all 
transport states observed across all trajectories.
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figure 3 | HMM-Bayes analysis of oscillating 
metaphase kinetochores. (a) Wide-field image 
of a HeLa cell expressing GFP-CENP-A to label 
kinetochores and GFP-CSAP to label the spindle 
poles (SP). Pairs of kinetochore trajectories 
during metaphase are overlaid in color, from 
yellow to dark green over time. (b) Enlarged 
pair of kinetochore trajectories corresponding 
to the boxed trajectories in a. (c) Cartoon of 
kinetochore (KT) motion showing projection of 
positions and displacements onto the direction 
perpendicular to the metaphase plate (MP). 
(d,e) Analysis of pooled kinetochore trajectories from the cell in a with HMM-Bayes. (d) The inferred state annotation from the motion model, two transport 
states (DV-DV) with opposite directions of transport (pink and orange), for one of the kinetochore trajectories from the pair in b is shown. (e) The inferred 
state annotations for the four pairs of trajectories in a (numbered 1–4 from top to bottom in a) are shown as colored bars as in figures 1 and 2.

in open source (http://hmm-bayes.org/ and Supplementary 
Software) and benefits from parallel computing when large  
biological data sets are considered.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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labeling of microtubules, cytoskeletal-associated proteins and 
ribosomes, may facilitate interpretation of the molecular origins 
of these heterogeneous β-actin mRNP transport dynamics in 
future studies.

To confirm the applicability of HMM-Bayes across multiple 
modes of intracellular motion in biological systems, we applied 
it to β-actin mRNP trajectories in live mouse fibroblasts15 and to 
oscillating kinetochores in dividing HeLa cells16. As with previ-
ous HMM procedures13, trajectories can be pooled to improve 
inference power (Supplementary Figs. 19–22), which enabled 
the detection of multiple diffusive states of fibroblast β-actin 
mRNPs (Supplementary Fig. 23 and Supplementary Note 5) 
and multiple transport states of oscillating kinetochores without 
the need for manual identification of direction reversals (Fig. 3,  
Supplementary Figs. 24 and 25, and Supplementary Note 6). 
Pooling assumes that each trajectory consists of the same set of 
underlying hidden motion states and parameter values; there-
fore, transport phases annotated within pooled trajectories are 
assumed to have the same direction and magnitude of trans-
port velocity across the trajectories. In some cases trajectories 
can be projected along specific directions of interest before  
pooling, as in the analysis of kinetochore dynamics. When transport  
occurs in random directions across a set of pooled trajectories, 
a modified version of HMM-Bayes that incorporates χ2 emis-
sion distributions can be applied (Supplementary Note 7 and 
Supplementary Figs. 26 and 27). Future applications of HMM-
Bayes may explore the one-dimensional (1D) projection of 2D 
and 3D transport along curvilinear objects such as microtubules, 
or the use of directional statistics to model changes in direction 
of transport. In addition, hierarchical or k-means clustering of 
trajectories could be used iteratively with HMM-Bayes to identify 
similar subsets of trajectories on the basis of common motion 
types and parameter values.

In conclusion, consideration of directed motion in the  
HMM annotation process for particle trajectories is important 
because biological transport is often driven by active motor  
and cytoskeletal processes. Our procedure annotates stochastic 
phases of directed transport and random motion. Quantitative 
information on rates of transport, directional switching, and  
locations and durations of pausing can be used to explore  
complex mechanisms of intracellular transport of biological  
particles. Because the formulation of our procedure is general to 
single-particle motion analysis, it should also apply to the analysis  
of cell migration in tissue culture models17 and developing 
embryos18,19. The HMM-Bayes software package is available  
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onLine methods
Formulation of a particle-trajectory HMM with directed 
motion. Following previous approaches11–13, we model particle 
displacements as emissions and motion models as hidden states 
of a hidden Markov model (HMM). The emission distributions 
for the observed displacements are normal distributions whose 
parameters depend on the hidden motion states, as described in 
more detail below. The s.d. of the emission distributions depend on 
the diffusion coefficients of the motion states and on localization 
error in the measurement of particle positions (Supplementary 
Note 2). In contrast to previous HMM procedures that assume dif-
fusive motion states with zero mean for the displacement emission 
distributions11–13, here we allow for active transport states with 
nonzero mean. This generalization to nonzero means to account 
for directed motion introduces multiple additional parameters 
(Supplementary Table 1) that can easily lead to overfitting of the 
trajectories and, consequently, erroneous trajectory annotation. 
We therefore implement Bayesian model selection, also described 
in more detail below, both on the number of hidden states and 
on the inclusion of the nonzero velocity parameter of appropriate 
dimensionality (1D, 2D, 3D) within each motion state, thus con-
sidering a considerably larger set of complex motion-switching 
models (Supplementary Table 1) than previous approaches.

In a single dimension, a particle trajectory consists of a sequence 
of particle positions xt separated by a time interval ∆t. For a par-
ticle undergoing a random walk with drift and in the absence 
of localization error20, the particle displacements ∆xt = xt+1−xt 
along this dimension follow a normal distribution with an s.d. that 
depends on the diffusion coefficient D according to σ = (2D∆t)1/2 
and a mean that depends on the velocity vx according to µx = vx∆t. 
For a 2D or 3D particle trajectory with particle positions rt = {xt, yt}  
or rt = {xt, yt, zt}, the displacements become ∆rt = {∆xt, ∆yt} =  
{xt+1 − xt, yt+1 − yt} or ∆rt = {∆xt, ∆yt, ∆zt} = {xt+1 − xt, yt+1 − yt,  
zt+1 − zt} and the velocity of the particle has multiple components, 
v = {vx, vy} or v = {vx, vy, vz}. In this work we assume isotropic  
diffusion, so the diffusion coefficient is always a scalar value. 
Under these conditions, the displacements are distributed  
according to a multivariate normal distribution; for example, in 
three dimensions
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Error in the experimental measurement of particle positions 
(localization error) contributes to the s.d. of the observed displace-
ments and must be taken into account when converting between 
σ and the diffusion coefficient (Supplementary Note 2).

In modeling single-particle transport dynamics in biological 
systems, we assume that particles may experience local changes 
in their diffusion coefficient, velocity or both due to interactions 
with their surroundings. To infer changes in these motion param-
eters from an observed sequence of particle displacements, we 
model particle displacements using an HMM, a type of Bayesian 
network that consists of a Markov chain of hidden variables,  
s = {s1,…,sT}, and a corresponding sequence of observed vari-
ables or emissions, e = {e1,…,eT}, where T is the number of obser-
vations. The hidden variables st can each take a discrete set of 
values or states, {S1,…,SK}, where K is the number of available 
states21. The probability of transitioning to a particular state at 

(1)(1)

time t depends only on the previous state at time t − 1 and is 
denoted by Φij = Pr(st = Sj | st−1 = Si), and the probability of start-
ing in state Si at time t = 1 is denoted by πi = Pr(s1 = Si). To model 
particle trajectories, we let the hidden states be the unobserved 
motion states of the particle characterized by the parameters  
D and v; thus, each hidden state Si represents a particular state 
of motion with a specific diffusion coefficient and velocity,  
Si = {Di, vi}. Because a particle may also experience periods of 
pure diffusion without directed transport, hidden motion states 
with zero velocity and only a single motion parameter, Si = {Di}, 
must also be considered in the model.

At every time point t, the particle is assumed to exist in one of 
these possible hidden states, but the specific state is unknown a 
priori. Instead, we observe a time series of particle displacements 
{∆r1,…,∆rT}, where T is the total number of time intervals over 
which the particle is tracked. These particle displacements are 
modeled as the emissions of the HMM. The probability of observ-
ing a particular emission at time t depends only on the state at time 
t according to a probability distribution pSi(et) = Pr(et | st = Si),  
which is in this case the normal distribution in equation (1) above, 
parameterized by the unobserved motion parameters {Di, vi} of 
the hidden state. Thus, any local changes in particle transport 
dynamics are inferred using the temporal information that is 
encoded in the time series of emissions.

The full set of parameters, denoted u, for an HMM with  
K motion states includes the length-K vector of starting probabili-
ties πi, the K × K matrix of transition probabilities Φij between  
all pairs of states and the motion parameters {Di, vi} that charac-
terize each hidden state 

 = { }= = ={ } , { } , { , },pi i
K

ij i j
K

i i i
KD1 1 1F v

These parameter values are inferred for different values of K on 
the basis of the observed sequence of particle displacements dur-
ing the model fitting and selection process described below.

Model-selection framework for the particle-trajectory HMM. 
When analyzing a particle trajectory, we do not know a priori 
either the number of motion states K that the particle explores 
during the time it is observed or the motion parameters associ-
ated with these states. Here we use a Bayesian model-selection 
approach to determine the appropriate number of motion states 
K without overfitting. We also assume that each of the K motion 
states may or may not include directed motion with nonzero 
velocity in addition to random diffusive motion. Because inclu-
sion of a nonzero velocity parameter can also lead to overfitting, 
we use our Bayesian model-selection framework to choose both 
the appropriate K and the number of states within K that have 
nonzero velocities (directed transport states). For example, we 
test three possible two-state models—one with two diffusive 
states (model D-D), one with one diffusive state and one transport 
state (model D-DV), and one with two transport states (model 
DV-DV)—and penalize the total number of parameters, which 
increases with the number of transport states. A full set of tested 
models and their associated numbers of parameters is shown in 
Supplementary Table 1 for HMMs with up to three hidden states. 
Note that for a given number of states K, there are K + 1 possible  
models to be tested, depending on how many of the K states 
are transport states with nonzero velocity. Our model-selection  

(2)(2)
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procedure evaluates the relative probabilities of these competing 
models up to some specified maximum number of states Kmax. The 
total number of models tested for a particular value of Kmax is thus 
(Kmax

2 + 3Kmax)/2, considerably larger than in the case of purely 
diffusive HMMs13, which test only a single motion-switching  
model for each number of states K.

Given an observed sequence of particle displacements, the 
posterior probability of a particular model Mk can be expanded 
according to Bayes’ theorem, 

Pr( )
Pr( )Pr( )

Pr( )
Pr( )M

M M
Mk

k k
k|

|
|e

e
e

e= ∝

where the emissions e = {e1,…,eT} are the displacements {∆r1,…,∆rT},  
as described above, and the final proportionality holds if the prior 
probabilities of the models, Pr(Mk), are assumed equal owing to 
the absence of prior information about the system. Thus, with 
uniform prior probabilities, only the likelihood Pr(e | Mk) must 
be calculated for each model to determine the relative model 
probabilities. This likelihood is found by marginalizing over the 
unknown parameter values k for each model Mk, 

Pr( ) Pr( , )Pr( )e e| | |M M M dk k k k k k= ∫   

where Pr(k|Mk) is the prior probability of a particular realization 
k of the parameter values for the model Mk, and Pr(e | k, Mk)  
is the likelihood of the observed emissions given the model and 
that particular set of parameters. For an HMM, the likelihood  
Pr(e | k, Mk) must also be marginalized over all possible hidden-
state sequences sk for the model Mk, as the temporal sequence  
of hidden states is unknown

Pr( ) Pr( ) Pr( )e e
s

| , | , , | ,  k k k k k k k k
k

M M M=∑ s s

Because of the HMM structure21, the first term depends only on the 
emission probability distributions according to Pr(e | sk, k, Mk) =  
ΠT

t = 1pst(et), where the emission distributions are parameterized 
by the Di and vi values for each state Si as described above, and the 
second term depends only on the starting and transition proba-
bilities according to Pr(sk | k, Mk) = πs1Π

T
t = 2 Φst–1st. Substituting 

into equation (4) above, the full equation for the marginal likeli-
hood in terms of the model parameters becomes 

Pr( ) Pr( )e
s

|M p ek s
t

T

s s
t

T

s t

k
t t t=

























∫ ∑ ∏ ∏

= =
−

p
1 1

2 1
Φ (( ) k k kM d|

Although the integral in equation (6) is intractable in general, 
the value of the integrand can be evaluated exactly for a given 
model Mk at any particular value of its associated parameters 
k, given a uniform parameter prior distribution Pr(k | Mk) and 
using the forward algorithm21 to evaluate the summation over 
hidden-state sequences. Therefore, to compute the likelihood  
Pr(e | Mk) for each model Mk, we use a numerical integration 
approach in which the integrand is evaluated at stochastically 
sampled values of k as described below.

(3)(3)

(4)(4)

(5)(5)

(6)(6)

Numerical integration of the likelihood. We use Markov chain 
Monte Carlo (MCMC), specifically the Metropolis MCMC algo-
rithm22–24, to sample the posterior distribution in equation (6). 
The value of the integrand in equation (6), f(k), is evaluated 
at a random starting point k

(0) in parameter space, then new 
parameters k

(1) are proposed from a multivariate normal dis-
tribution in parameter space centered at k

(0), and the new k
(1) 

is accepted with probability min(1, f(k
(1))/f(k

(0))). Additional 
details on these steps are given below. Repeating this process 
results in sampling a stationary distribution of parameters that is 
proportional to f(k).

For our particle-trajectory HMM with directed transport, the 
full set of parameters to be sampled is given in equation (2) above. 
As discussed in the previous section, however, we also consider 
models in which some of the hidden motion states are purely 
diffusive states with zero velocity. For any given tested model 
Mk, let K be the total number of states and KV be the number 
of states with nonzero velocity, where 0 ≤ KV ≤ K. Then the full 
set of parameters that must be sampled is k = {π1,…,πK,Φ11,…, 
ΦKK,D1,…,DK,v1,…,vKV}. At each step in an MCMC run, one 
or more parameters in this set can be selected for updating. We 
found that updating a randomly selected block of related param-
eters at each step24 exhibited the fastest and most robust con-
vergence compared with other move-sets, such as updating all 
parameters simultaneously or updating only a single randomly 
selected parameter at each step. Motivation for the block updating 
approach is that parameters with correlated effects on f(k) should 
be updated at the same time to increase the probability of escaping 
from local maxima in the likelihood landscape24. Here we split the 
parameters into three blocks: the probability parameters {π1,…, 
πK,Φ11,…,ΦKK}, the diffusion coefficients {D1,…,DK} and the 
velocities {v1,…,vKV}. At each step, one of these blocks is selected 
randomly with equal probability, updates are proposed for all of 
the parameters within that block, and the update is accepted or 
rejected according to the Metropolis criterion above.

To initialize each MCMC run, we choose a random point in 
parameter space that is within a range defined by the set of observed 
particle displacements. The maximum-likelihood velocity param-
eters in each dimension will not be greater than the largest observed 
single-displacement velocity or less than the smallest observed 
single-displacement velocity for that dimension. Therefore, initial  
guesses for the velocity parameters vx,i, vy,i, and vz,i for each 
state Si in {S1,…,SKV} are drawn from uniform distributions on 
this range; for example, vx,i

(0) ~U(mint(∆xt)/∆t, maxt(∆xt)/∆t).  
Because the velocities are related to the means of the emission 
probability distributions by µx,i = vx,i∆t, in practice we fit the 
means {m1,…,mKV} and convert to velocities as a final step in 
the analysis. Similarly, the diffusion coefficients {D1,…,DK} are 
related to the s.d. of the emission distributions by σi = (2Di∆t)1/2, 
so in practice we fit the s.d. {σ1,…,σK}. These σ parameters 
must be greater than 0 and will generally not be greater than 
the largest observed width of the displacement distribution 
across the dimensions, so we draw initial guesses from a uni-
form distribution, σi

(0) ~U(0, maxξ(maxt(∆ξt) − mint(∆ξt))),  
where ξ parameterizes the spatial dimensions of the particle tra-
jectory, for example, one of {x, y, z} for a 3D trajectory. Finally, 
initial guesses for the probability parameters {π1,…,πK,Φ11,…, 
ΦKK} are all set to the same value 1/K. Multiple restarts of MCMC 
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are run with different initial guesses for the mean and s.d.  
parameters, with at least 100 restarts for models with more  
than a single state.

During each MCMC run from a particular initial parameter 
guess, parameter values are updated using a normal proposal dis-
tribution centered on the previous value of each parameter and 
with an s.d. δ that is specific to each parameter type, denoted as 
δµ, δσ, δπ and δΦ. These proposal distribution widths are set adap-
tively during the series of MCMC initialization runs to maintain 
a target acceptance rate, computed separately for each block of 
parameters, of between 0.3 and 0.5, which is generally recom-
mended for efficiently exploring the likelihood landscape25. We 
initialize δµ and δσ to 1/50 of the initial guess ranges given above 
for the µ and σ parameters and then update δµ and δσ at the end 
of each initialization run on the basis of the acceptance rates cal-
culated for that run. Because the σ parameters are constrained 
to be positive, parameter updates are automatically rejected if 
a σ value below 0 is proposed. The probability parameters are 
constrained in the range [0,1] and must satisfy the conditions 
ΣK

i=1πi = 1 and ΣK
j=1Φij = 1 for all i; therefore, these probabilities 

are renormalized after every update of the probability block, and 
the values of δπ and δΦ are updated on the basis of the minimum 
distance of the πi or Φij probabilities, respectively, from either  
of the boundaries 0 or 1 to maintain a relatively consistent  
acceptance rate along the MCMC chain.

Following the MCMC initialization runs, a longer MCMC run 
is performed, starting from the parameter values that yielded the 
highest likelihood during the initialization runs, and is subse-
quently used to report the maximum-likelihood parameter values 
for each tested model as well as to define the sampling distribution  
for numerical integration of the desired integral in equation (6). 
For a sampling distribution q(k), the estimator for the value of 
the integral is equal to the mean value of the ratio of the integrand 
f(k) to q(k) over the sampled values of k (ref. 22), 

ˆ ( )

( )
I

f

qk
k

k
q= 



where the subscript q indicates that the mean is calculated over 
values of k sampled from the distribution q(k). The sampling 
distribution that gives an estimator with minimum variance22 is 
the distribution proportional to f(k), which is approximated by the 
MCMC samples. We use the MCMC samples to define a sampling  
distribution q(k) in which the parameters {σ1,…,σK} and {m1,…,mKV}  
are each sampled from a normal distribution with the same mean 
and s.d. as the sampled values of that parameter during the second 
half of the long MCMC run, so that these parameters are sampled  
from the important regions of parameter space identified by 
MCMC. The probability parameters {π1,…,πK,Φ11,…,ΦKK} are 
sampled from K-dimensional simplexes to ensure that each sampled  
point meets the conditions ΣK

i = 1πi = 1 and ΣK
j = 1Φij = 1.

This integration approach results in an estimate from equation (7)  
of the integral in equation (6). The probability density q(k) of  
the sampling distribution is computed analytically for each sam-
pled point k using the normal distributions and uniform sim-
plexes above. The value of f(k) is computed for each sampled point 
k using the forward algorithm as discussed above, and assuming 
that the prior probability Pr(k | Mk) in equation (6) is constant 
over a bounded region in parameter space. For the probability 
parameters, which are inherently bounded on K-dimensional  

(7)(7)

simplexes, the prior is uniform over each simplex. For the  
emission mean and s.d. parameters, the uniform bounded  
region is centered on the mean of the sampled values of that 
parameter during the second half of the long MCMC run above, 
with a width equal to 200 times the s.d. of the MCMC samples,  
as in previous work10,26. Finally, after computing Pr(e | Mk) for 
each model, the final model probabilities in equation (3) are  
calculated by normalizing these values of Pr(e | Mk) across the  
set of tested models.

Pooling multiple trajectories. The preceding sections describe 
the application of our procedure to an individual particle trajec-
tory. However, in many biological applications, large numbers 
of short trajectories are obtained from independent particles 
that may be assumed to undergo the same dynamical processes 
with the same motion parameters for the purposes of multiple-
hypothesis testing. When this assumption is valid, pooling the 
trajectories to perform a joint analysis increases the inference 
power of the Bayesian HMM approach and therefore its ability 
to resolve complex models with multiple states and parameters13. 
Including multiple independent trajectories in the likelihood cal-
culation is straightforward, as their individual likelihoods can 
be multiplied13. For W trajectories, each with a set of observed 
displacements or emissions ew, Bayes’ rule becomes 

Pr { }
Pr { } Pr

Pr { }
Pr { }M

M M
k w w

W w w
W

k k

w w
W w w|

|
e

e

e
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Analogous to equation (4) above, the marginal likelihood  
is then 

Pr { } Pr { } , Pre ew w
W

k w w
W

k k k k kM M M d= =( ) = ( ) ( )∫1 1| | |  

which, assuming independent trajectories, becomes 

Pr { } Pr , Pre ew w
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k
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w k k k k kM M M d=
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 ( )∫ ∏1

1
| | |  

The calculation of each individual Pr(ew | k, Mk) in equation (10)  
still follows equation (5) above. The MCMC sampling approach 
above now explores the parameters k for each model Mk 
based on the full set of pooled trajectories rather than for each  
trajectory individually. Therefore, this pooling approach requires 
that the trajectories explore the same set of possible motion states 
with the same motion parameters. The hidden-state sequences sw,  
on the other hand, are marginalized out by the forward algorithm, 
and the most likely state sequence can be obtained for each trajec-
tory independently using the most likely parameters of the most 
likely model. Thus, the pooled trajectories are not required to 
have the same hidden-state sequences and can transition between 
the different motion states at different times.

Simulations of single-particle trajectories. Diffusive single- 
particle trajectories were simulated by drawing random step lengths 
in each dimension from a normal distribution with zero mean and 
s.d. equal to (2D∆t)1/2, where D is the diffusion coefficient and ∆t  

(8)(8)

(9)(9)

(10)(10)
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is the time interval for each step. Directed motion was modeled by 
adding a fixed displacement of length v∆t to the diffusive compo-
nent of motion at each time step, where v is the velocity vector.

Imaging mRNA in live neurons. Recent advances in live-cell mRNA 
fluorescence labeling techniques have enabled the visualization  
of β-actin mRNA transport dynamics in live cells using the MS2 
bacteriophage capsid protein system4,5. GFP-tagged MS2 capsid 
proteins (MCP-GFP) associate with tandem RNA stem-loops 
knocked into the 3′ untranslated region (UTR) of the β-actin gene 
in the β-actin–MS2–binding site knock-in (MBS) mouse4. All 
experiments using animals were carried out under the approval 
of the Albert Einstein College of Medicine Institutional Animal 
Care and Use Committee (IACUC). We used 6- to 8-week-old 
male and female mice to set up timed pregnancies of double-
homozygous MCP × MBS mice. Hippocampal neurons were 
cultured from MCP × MBS mouse pups at postnatal day 0–2 
as described previously5. Briefly, we dissected out hippocampi,  
dissociated them with trypsin and plated 85,000 cells onto poly 
(d-lysine)-coated dishes (MatTek). The cultures were maintained 
in Neurobasal-A medium supplemented with B-27, GlutaMAX  
and Primocin (InvivoGen) at 37 °C and 5% CO2 for 14–22 d 
before imaging. For live neuron imaging, we removed the medium 
from cell cultures and replaced it with HEPES-buffered solution 
(HBS) containing 20 mM HEPES-HCl, pH 7.4, 119 mM NaCl,  
5 mM KCl, 2 mM CaCl2, 2 mM MgCl2 and 30 mM glucose before 
the experiment. Time-lapse images were taken on an Olympus 
IX-71 inverted microscope with a UApo 150×, 1.45–numerical 
aperture (NA) oil-immersion objective (Olympus), an MS-2000 
XYZ automated stage (ASI) and an iXon electron-multiplying 
charge-coupled device (EMCCD) camera (Andor). The cells were 
kept at 37 °C with 60% humidity in an environmental chamber 
(Precision Plastics). The GFP was excited by the 488-nm line 
from an argon ion laser (Melles Griot). Emission was filtered 
with a 525/30 band-pass filter (Semrock). Wide-field images 
were acquired at 10 f.p.s. using MetaMorph software (Molecular 
Devices). Individual localizations of mRNPs were obtained via 
single-particle tracking using the u-track-2.0 package7.

Imaging mRNA in live fibroblasts. Mouse embryonic fibroblast 
cell lines derived from the MBS mouse stably express tdMCP-GFP 
to label all endogenous β-actin mRNA as described previously15. 

Microtubules were labeled by transient expression of mCherry–
α-tubulin. mRNPs were visualized with TIRF excitation on the 
same microscope setup described above at 35 ms per frame in 
streaming acquisition mode. mRNP trajectories were analyzed 
with the DiaTrack 3.03 package27, and coordinates were exported 
for HMM analysis.

Imaging metaphase kinetochore dynamics in tissue culture 
cells. HeLa cells (Cheeseman lab) were maintained in DMEM 
supplemented with 100 U/ml streptomycin, 100 U/ml penicillin,  
2 mM glutamine and 10% (vol/vol) FCS. Cell lines were routinely 
validated and checked for mycoplasma contamination using 
Mycoalert (Lonza). Cells were cultured at 37 °C with 5% CO2. 
Cells expressing GFP-LAP fusions to CSAP28 and CENP-A29 were 
generated using retroviral infection of HeLa cells with pBABE-
blasticidin–based vectors. Images were acquired on a Nikon 
eclipse microscope equipped with a CCD camera (Clara, Andor). 
For time-lapse imaging, cells were imaged in CO2-independent  
medium (Invitrogen), supplemented as above for the DMEM 
culture medium, at 37 °C. Images were acquired every 6 s using 
three z sections at 0.7-µm intervals using a 40×, 1.3-NA Plan  
Fluor objective (Nikon). GFP fluorescence was observed using 
appropriate filters. Kinetochore positions were manually tracked 
using the MTrackJ program30.

Code availability. The HMM-Bayes software package and asso-
ciated documentation are available as Supplementary Software 
and online at http://hmm-bayes.org/.
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