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SUMMARY

The p53 tumor suppressor utilizes multiple mecha-
nisms to selectively regulate its myriad target genes,
which in turn mediate diverse cellular processes.
Here, using conventional and single-molecule
mRNA analyses, we demonstrate that the nucleo-
porin Nup98 is required for full expression of p21,
a key effector of the p53 pathway, but not several
other p53 target genes. Nup98 regulates p21 mRNA
levels by a posttranscriptional mechanism in which
a complex containing Nup98 and the p21 mRNA
30UTR protects p21 mRNA from degradation by
the exosome. An in silico approach revealed another
p53 target (14-3-3s) to be similarly regulated by
Nup98. The expression of Nup98 is reduced in
murine and human hepatocellular carcinomas
(HCCs) and correlates with p21 expression in HCC
patients. Our study elucidates a previously unrecog-
nized function of wild-type Nup98 in regulating
select p53 target genes that is distinct from the
well-characterized oncogenic properties of Nup98
fusion proteins.

INTRODUCTION

The p53 tumor suppressor functions as a sequence-specific

transcriptional regulator for a great variety of target genes.
Molec
Different subsets of these target genes mediate various cellular

outcomes such as cell-cycle arrest, senescence, programmed

cell death, or others (reviewed in Vousden and Prives, 2009).

The underlying molecular processes that dictate p53 target

gene preference are complex and still only partially understood.

Previously we found that the nuclear transport factor hCAS/

Cse1L binds to a subset of p53 target gene promoters and is

required for their full activation upon stress-mediated p53 induc-

tion (Tanaka et al., 2007).

An RNAi screen against other nuclear transport factors,

nuclear pore components in particular, suggested that the

nucleoporin Nup98may also contribute to target gene selectivity

of p53. Nucleoporins (Nups), essential components of the

nuclear transport machinery, form the nuclear pore complex

(NPC), which is embedded in the nuclear envelope and facilitates

nucleocytoplasmic trafficking (reviewed in D’Angelo and Hetzer,

2008). An increasing body of evidence (largely from studies in

yeast) suggests that in addition to their well-characterized role

in transport, some Nups are also involved in regulating gene

expression (reviewed in Köhler and Hurt, 2010; Strambio-De-

Castillia et al., 2010). In particular, Nup98, a major component

of the NPC (Cronshaw et al., 2002), was reported to move from

the NPC into the nucleoplasm in a transcription-dependent

manner (Griffis et al., 2002) and also to be involved in mRNA

export (Enninga et al., 2002; Powers et al., 1997), Further,

Drosophila Nup98 is required for activation of genes related to

stress response, cell-cycle progression, and development

(Capelson et al., 2010; Kalverda et al., 2010). Nup98 has also

been linked to cancer, yet only within the context of Nup98

oncogenic fusion proteins that occur as a consequence of
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Figure 1. Nup98 Depletion Selectively

Reduces p21 mRNA and Protein Accumula-

tion upon p53 Activation

(A) HepG2 cells were treated either with control (ctrl)

or two Nup98 siRNAs (Nup98#1 and Nup98#2) for

72 hr, and CPT (300 nM) was added for the final

24 hr before lysis of cells for mRNA and protein

analysis. Relative expression of p53 target genes

p21, PUMA, GADD45, NOXA, ATF3, and Nup98

was measured by qRT-PCR and normalized to 1 for

each ctrl siRNA and drug treatment condition. Data

are presented as mean ± standard deviation (SD) of

three independent experiments.

(B) HepG2 cell were treated as in (A), and cell

extracts were examined by immunoblotting with

indicated antibodies.

(C) HepG2 cells were treated either with control

(ctrl) or Nup98#1 and Nup98#2 siRNA for 72 hr, and

Nutlin-3 (20 mM) was added 24 hr prior to extraction

of cells for protein analysis. Cell extracts were

analyzed by immunoblotting with the indicated

antibodies.
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chromosomal translocations in leukemias (e.g., Nup98-HOXA9

t[7;11][p15;p15]; Moore et al., 2007; reviewed in Xu and Powers,

2009)). The function of wild-type Nup98 in tumor development is

largely unknown.

RESULTS

Nup98 Ablation Selectively Reduces p21 mRNA
and Protein Accumulation upon p53 Activation
Since a Nup siRNA screen identified Nup98 as a likely determi-

nant of p53 target gene selectivity (see Figure S1A online), we

transfected HepG2 liver cancer cells (wild-type p53) with

Nup98 siRNAs and then treated the cells with Camptothecin

(CPT) to activate p53. The induction of p53 target gene

mRNAs including p21 (=CDKN1A), PUMA, GADD45, NOXA,

and ATF3 was measured by quantitative real-time PCR

(qRT-PCR) (Figure 1A). p21 mRNA (Figure 1A) or protein (Fig-

ure 1B) was unique in being affected by Nup98 ablation.
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Similar results were obtained in HepG2

cells treated with Daunorubicin (data not

shown) as well as in Huh-6 and Sk-

Hep1 cells treated with CPT (Figure S1B).

Nup98 knockdown also led to decreased

p21 (but not PUMA) protein upon treat-

ment with Nutlin, a compound that

disrupts the p53-Mdm2 complex. This

indicates that the effects of Nup98

depletion were independent of DNA

damage signaling (Figure 1C). Further,

Nup98 depletion selectively reduced

p21 mRNA induction in Hep3B-4Bv cells

that harbor a temperature-sensitive p53-

mutant (Friedman et al., 1997) at 32�C
when p53 is in wild-type conformation

(Figure S1C). The basal levels of p21
mRNA in the presence or absence of Nup98 were largely

unchanged in three different liver cancer cell lines, suggesting

that only induced p21 expression (here in response to upregu-

lated levels of p53) relies on full expression of Nup98 (Fig-

ure S1D). Taken together, our data suggest that Nup98 is

required for induction of p21 by p53 in a DNA damage-inde-

pendent manner.

The predominant biogenesis of Nup98 occurs by autocleav-

age of a Nup98/Nup96 precursor protein (Fontoura et al.,

1999; Rosenblum and Blobel, 1999). Arguing strongly against

the possibility that Nup96 is also involved in p21 expression, is

the finding that, upon transfection of two Nup98 siRNAs, despite

decreased amounts of precursor Nup98/96 mRNA, Nup96

protein levels remained unaltered (Figure S1E, left panels, top

and bottom; see right panel for Nup96 antibody specificity).

Having excluded Nup96 as a factor in controlling p21 gene

expression, we went on to examine the mode by which Nup98

regulates p21 mRNA accumulation.



A

B

C D

Figure 2. Posttranscriptional Regulation of

p21 by Nup98

(A) Nup98 regulates the levels of mature but not

nascent p21 mRNA. (Upper left panel) Schematic

depicts primers used to amplify different regions

of nascent and mature p21 mRNA. The numbers

indicate the position of the amplicon within the

p21 gene locus. Rectangles represent exons 1–3.

HepG2 cells were treated as described in Fig-

ure 1A. Nascent p21 mRNA induction was

measured by qRT-PCR with primer pairs anneal-

ing to intronic regions of the unspliced transcript:

first intron (+4001) (upper right panel) and second

intron (+7011) (lower left panel), respectively.

(Lower right panel) Spliced p21 mRNA was

measured by using the exon-spanning primer pair

(+5817/+7223) indicated in the schematic. Data

are presented as mean ± SD of two independent

experiments.

(B) Nup98 regulates exogenous p21 mRNA. (Left

panel) H24-p21 cells containing a tetracycline

(Tet-off)-regulatable p21 expression construct

were treated either with control (ctrl) or Nup98

siRNAs (Nup98#1 and Nup98#2) for 72 hr as in

Figure 1. p21 was induced by removal of Tet 24 hr

before harvesting. Left panel shows relative p21

and Nup98 mRNA expression measured by qRT-

PCR and normalized to 1 for the ‘‘ctrl siRNA tet-’’

condition. Data are presented as mean ± SD

derived from two independent experiments. (Right

panel) Protein expression from the same experi-

mental condition analyzed by immunoblotting with

indicated antibodies.

(C) PUMA levels are not affected by Nup98

knock-down. H1299-derivative cell line containing

a tetracycline (Tet-on)-regulatable PUMA expres-

sion construct (H24-PUMA) was treated either with

control (ctrl) or two Nup98 siRNAs (Nup98#1 and

Nup98#2) for 72 hr. PUMA was induced by adding

Doxycycline 24 hr before harvesting. Cell extracts

were analyzed by immunoblotting with indicated

antibodies.

(D) Nup98 stabilizes mature p21 mRNA. HepG2

cells were treated either with control (ctrl) or

Nup98#2 siRNA (Nup98#2) for 72 hr, and Nutlin-3

(20 mM) was added 24 hr before blocking

mRNA synthesis with 0.4 mM Actinomycin D

(Act-D). Cells were harvested at indicated time points, and mature p21 mRNA decay was measured by qRT-PCR with the exon-spanning primer pairs described

in Figure 2A. The solid and dotted lines indicate the half-life of p21 in ctrl-siRNA or Nup98#2 conditions, respectively.
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Nup98 Regulates p21 by a Posttranscriptional
Mechanism
To determine the stage of p21 gene expression that is regulated

by Nup98, we compared induction of nascent unspliced and

mature spliced p21 mRNA in HepG2 cells, using primers that

anneal to intronic regions of unspliced p21 mRNA (first and

second intron, respectively) or exon-spanning primers that

detect only spliced, mature p21 mRNA (Figure 2A, upper left

panel). Interestingly, while induction of nascent p21 mRNA

(upon CPT treatment) was not significantly impacted by Nup98

knockdown (Figure 2A, upper right and lower left panels), levels

of mature p21 mRNA were significantly decreased upon Nup98

depletion compared to the control siRNA-treated cells (Fig-

ure 2A, lower right panel).
Molec
To confirm that the lowered p21 mRNA levels upon Nup98

knockdown were independent of transcription initiation, and

also to exclude a splicing defect, we utilized an H1299 derivative

p53 null cell line (H24-p21) in which p21 mRNA is transcribed

from a p21 cDNA construct under the control of an artificial

‘‘tet-off’’ promoter (Niculescu et al., 1998). This construct lacks

intronic regions but does contain part of the p21 30UTR. In these

cells, Nup98 knockdown again resulted in impaired accumula-

tion of p21 mRNA (Figure 2B, left panel) and protein (Figure 2B,

right panel). As before, Nup96 protein levels were unaltered by

Nup98 siRNAs (Nup98#1 and Nup98#2) despite a decrease in

the Nup98/Nup96 precursor mRNA (Figure S2A). In a related

H1299 cell derivative, inducible ectopic PUMA expression was

unaltered by Nup98 knockdown (Figure 2C).
ular Cell 48, 799–810, December 14, 2012 ª2012 Elsevier Inc. 801
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Based on these findings, we hypothesized that Nup98

stabilizes mature p21 mRNA. To test this, we performed

mRNA half-life experiments by blocking transcription with Acti-

nomycin D in the presence or absence of Nup98 siRNAs.

As predicted, p21 mRNA induced by either Nutlin (Figure 2D)

or CPT (Figure S2B) treatment in HepG2 cells had a shorter

half-life (approximately 45 min) when Nup98 was ablated

by siRNA (siNup98#2) compared to the control condition

(approximately 90 min). Similar findings were obtained with

another Nup98 siRNA (Figure S2C). Consistent with the observa-

tion that uninduced p21 mRNA levels do not change in

response to Nup98 ablation in HepG2 cells, we did not observe

differences in basal p21 mRNA half-life under these conditions

(Figure S2D).

Taken together, Nup98-mediated regulation of p21 mRNA

occurs by a splicing-independent posttranscriptional mecha-

nism that involves stabilization of the mature p21 mRNA

transcript.

Decreased p21 mRNA Accumulation upon Nup98
Knockdown Occurs in the Nucleus and the Cytoplasm
and Can Be Rescued by Blocking the Exosome
Our results indicated that Nup98 knockdown is associated with

a higher rate of p21 mRNA turnover. Since mRNA degradation

can occur at each step from the site of transcription to the site

of translation (reviewed in Houseley and Tollervey, 2009), we

sought to determine in which cellular compartment Nup98

affected p21 mRNA stability. Furthermore, since Nup98 is re-

ported to be involved in mRNA export (Enninga et al., 2002),

we wanted to address whether or not Nup98 knockdown leads

to nuclear p21 mRNA accumulation. We used single-molecule

sensitive fluorescence in situ hybridization (mRNA FISH) (Femino

et al., 1998) to obtain a detailed and quantitative view of nuclear

and cytoplasmic p21mRNAmolecules before and after p53 acti-

vation in the presence or absence of Nup98. As expected, Nutlin

treatment caused an increase in the overall number of single p21

mRNA transcripts in HepG2 cells (Figures 3A and 3B and

summarized in Table S1), which was significantly decreased

upon Nup98 knockdown (Figures 3C and 3D and Table S1).

Nup98 depletion led to a marked reduction in cytoplasmic and

more modest diminution of nuclear p21 mRNA molecules in

Nutlin-treated cells (Figures 3C and 3D and Table S1). As an

additional control, in cells containing p21 siRNA, even fewer

cytoplasmic p21 mRNA molecules were detected (Figure 3E

and Table S1). Although p21 mRNA did not accumulate in the

nucleus upon Nup98 depletion (but actually decreased), a role

for Nup98 in p21 mRNA export remains plausible (see the

Discussion).

mRNA degradation in yeast strains with mutated Nup116

(a homolog of mammalian Nup98) is mediated by the exosome

(Das et al., 2003). We therefore determined whether the reduced

levels of p21 mRNA could be rescued by codepletion of Exosc3

(Rrp40), a core component of the exosome. As shown in Fig-

ure 3F, codepletion of Exosc3 with Nup98 in the H24-p21 cell

line prevented the decrease of p21 mRNA levels observed after

Nup98 knockdown alone. These results implicate a role of

Nup98 in stabilizing p21 mRNA transcripts in a manner that

precludes their turnover by the exosome.
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The 30UTR of p21 mRNA Associates with Nup98
and Is Required for Nup98-Mediated Increased
p21 mRNA Levels
Nup98 localizes primarily at the NPC, reflected in a punctate

nuclear rim staining, and to a minor extent within the nucleus,

detected as intranuclear foci previously described as GLFG

bodies (Enninga et al., 2002; Griffis et al., 2002; and Figure S3A).

We hypothesized that Nup98 may associate with p21 mRNA

and thereby affect its stability in the nucleus (and the cytoplasm

as well). To address this, RNA-IP experiments were performed

in which Nup98 was immunoprecipitated from formaldehyde

crosslinked samples of HepG2 cells that were untreated

or CPT treated (Figure 4A) or treated with Nutlin (data not

shown). For amplification by qRT-PCR, primer pairs specific

for different regions of p21 mRNA or PUMA mRNA (as a

negative control) were used to localize the potential regions of

interaction with Nup98 (or Nup98-associated protein). Remark-

ably, Nup98 could be coimmunoprecipitated with p21 mRNA,

with the most significant interaction being detected in the

30UTR. By contrast, an anti-Nup98 RNA-IP revealed almost

no interaction within the PUMA 30UTR. Nup98 also coimmuno-

precipitated with p21 mRNA in H24 p21 tet-off cells, again

with the strongest interaction being detected in the 30UTR
(Figure S3B).

These results were extended by experiments showing that

ectopic Nup98 was able to significantly increase the levels of

coexpressed full-length p21 cDNA (p21 FL) but not p21 cDNA

lacking the 30UTR (p21 del 30UTR) (Figure 4B; see Figure S3C

for corresponding protein levels). Approximately 10-fold more

transfected p21 FL construct than p21 del 30UTR construct

was required to reach equivalent p21 mRNA levels, suggesting

that the p21 30UTR per se is a negative regulator of p21 mRNA

stability. We also observed that the p21 30UTR fused to the

coding DNA sequence (CDS) of Luciferase (Luc/p21 30UTR)
mediates a similar response to Nup98 (Figure 4C). Finally,

Nup98 overexpression led to an increase of a hybrid construct

(CDS of PUMA attached to the 30UTR of p21; Pu/p21), while

full-length Puma 30UTR (Pu FL) was unaffected (Figure 4D).

Taken together, our data show that the p21 30UTR is necessary

and sufficient for the ability of Nup98 to augment the accumula-

tion of p21 mRNA.

Two domains of Nup98 have been implicated for its role in

mRNA export. One is the glycine-leucine-phenylalanine-glycine

(GLFG) repeat domain that is important for transcription-

dependent mobility of Nup98 and which serves as a docking

site for the mRNA export receptor TAP/NXF1 (Blevins et al.,

2003; Griffis et al., 2004). The other is the Gle-2-binding domain

(GBD) mediating the interaction of Nup98 with the mRNA export

factor Rae1/Gle2 that also interacts with TAP (Blevins et al.,

2003). Different truncated versions of Nup98 were expressed in

H1299 cells along with cotransfected p21 (p21 FL). Overexpres-

sion of full-length Nup98 (construct #1) maximally increased

p21 protein expression in a concentration-dependent manner,

whereas the C terminus alone (construct #2; 506–920) only

produced a modest increase (Figure 4E). Overexpression of

the full-length GLFG repeat domain plus the C terminus

(construct #3; 221–920) but lacking the GBD was sufficient to

increase p21 protein to levels seen with wild-type Nup98. The
Inc.
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Figure 3. Nup98 Affects Nuclear and Cytoplasmic p21 mRNA Level and Protects p21 mRNA from Degradation by the Exosome

Nup98 knockdown affects the levels of nuclear and cytoplasmic p21 mRNA.

(A–E) Left panels show images of HepG2 cells that were treated either with ctrl (A and B) or Nup98#1 (C) Nup98#3 (D) or p21 (E) siRNAs for 72 hr and then treated

with either DMSO (A) or Nutlin-3 (20 mM; B–E) for 24 hr prior to single-mRNA FISH analysis as described in the Experimental Procedures. FISH images were

detected in theCy5 channels and color coded as red. The blue channel contains aDAPI stain to demarcate the nuclei. For display, 5–15 images, depending on cell

shape, from the cell midsection were averaged in both channels. Scale bar shown in (E) equals 2 mm in all images. Right panels are histograms of p21 mRNA

molecule counts per cell corresponding to (A) (48 cells counted), (B) (58 cells counted), (C) (29 cells counted), (D) (55 cells counted), and (E) (59 cells counted). Data

are pooled from three repeats of the experiments with errors and statistical analysis shown in Table S1.

(F) Exosc3 knockdown rescues lowered p21 mRNA levels upon Nup98 depletion. H24 p21 tet-off cells were treated individually with either control (ctrl) or

Nup98#1 siRNA, or cotransfected with Exosc3 siRNA (Ex3#1 and Ex3#2) for 72 hr as indicated. p21 was induced by removal of Tet 48 hr before harvesting.

Relative p21mRNA levels were measured with qRT-PCR. Data are presented as mean ± SD (left panel). Western blot (inset) shows Exosc3 levels in p21 H24 cells

treated either with ctrl or Ex3#1 and Ex3#2 siRNA. Actin serves as loading control.
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Figure 4. The 30UTR of p21 mRNA Coasso-

ciates with Nup98 and Is Required for

Nup98-Mediated Increased Levels of p21

mRNA

(A) Nup98 associates with the 30UTR of p21. RNA-

IP was performed as described in the Experi-

mental Procedures. Briefly, Nup98 was immuno-

precipitated from 0.1% formaldehyde crosslinked

samples of CPT (300 nM for 24 hr)-treated or

untreated HepG2 cells. Coimmunoprecipitated

mRNAs crosslinked to Nup98 were reverse tran-

scribed and amplified by qRT-PCR. Primer pairs

specific for different regions of p21 mRNA or

PUMA mRNA were used. In the schematic below,

the graph rectangles represent exonic regions of

the respective genes, and shaded rectangles

indicate the 30UTRs of p21 and PUMA mRNA as

indicated. The numbers below the lines indicate

the position of each amplicon within the p21 or

PUMA gene locus, respectively. Data are pre-

sented as mean ± SD.

(B) The 30UTR of p21 mRNA is required for

increased p21 expression levels mediated by

ectopically expressed Nup98. Hep3B cells were

cotransfected with HA-tagged Nup98 (0.75 or

1.25 mg) and p21 cDNA containing the 30UTR (p21

FL, 200 ng) or p21 cDNA without the 30UTR (p21

del 30UTR, 20 ng) 24 hr prior to RNA extraction.

p21 mRNA levels transcribed from the respective

constructs were measured with qRT-PCR. Data

are presented as mean ± SD.

(C) The 30UTR of p21mRNA is sufficient for stabi-

lization by Nup98. H1299 cells were cotransfected

with HA-tagged Nup98 (1.75 mg) and a Luciferase

construct (Luc/p21 30UTR, 200 ng) containing the

30UTR of p21 mRNA or the Luciferase construct

lacking the p21 mRNA 30UTR (Luc ctrl, 20 ng) 48 hr

prior to RNA extraction. The mRNA levels tran-

scribed from the respective constructs were

measured with qRT-PCR. Data are presented as

mean ± SD of two independent experiments.

(D) The 30UTR of p21mRNA is sufficient for stabi-

lization by Nup98. H1299 cells were cotransfected

with HA-tagged Nup98 (1.75 mg) and a construct

containing the coding DNA sequence (CDS) and

the 30UTR of PUMA (Pu FL, 200 ng) or a hybrid

construct containing the PUMA CDS fused to the

30UTR of p21 (Pu/p21, 200 ng) The mRNA levels

transcribed from the respective constructs were

measured with qRT-PCR. Data are presented as

mean ± SD.

(E) The GLFG repeat domain of Nup98 is required for maximal increase of p21 expression. H1299 cells were cotransfected with GFP-tagged full-length (#1) or

truncated (#2–#4) Nup98 constructs with indicated concentrations and 1 mg untagged full-length p21 cDNA 24 hr before protein extraction. Immunoblot shows

protein expression of transfected Nup98 and p21 detected with the indicated antibodies. Actin serves as loading control.
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C-terminal half of the GLFG repeat domain plus the C terminus

(construct #4; 362–920) was not able to fully stabilize p21.

Thus the intact GLFG repeat but not the GBD of Nup98 is

necessary for full stabilization of p21. Nup98-dependent regula-

tion of p21 may require the mobility of Nup98 and/or its interac-

tion with TAP but is independent of its interaction with Rae1/

Gle2. In line with this, in our siRNA screen the depletion of

Rae1/Gle2 did not lead to reduced p21 mRNA accumulation

(Figure S1A).
804 Molecular Cell 48, 799–810, December 14, 2012 ª2012 Elsevier
An In Silico Approach Identifies 14-3-3s as Another
p53 Target Gene mRNA that Is Bound and Regulated
by Nup98
Since the strongest association of Nup98with p21mRNA occurs

in its 30UTR, we sought to determine whether other mRNAs

within the p53 transcriptional regulon might also be regulated

posttranscriptionally by Nup98 (Keene, 2007). We adapted

a computational method previously used to infer mechanisms

of posttranscriptional messenger RNA stability regulation from
Inc.
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Figure 5. An In Silico Approach Identifies

14-3-3s as Another p53 Target Gene

mRNA that Associates with and Is Regu-

lated by Nup98

(A) Flow chart describing the unbiased genome-

wide in silico cis-regulatory analysis that yielded

the CCc/tC motif. The MatrixREDUCE algorithm

was used to discover a nucleotide sequence motif

(in the form of a weight matrix) whose occurrences

in the 30UTR optimally predict p53-dependent

changes in steady-state mRNA expression 72 hr

after doxorubicin treatment.

(B) Motif occurrences in a 400 bp window imme-

diately upstream of the polyadenylation site are

significantly more predictive of the expression

changes than those downstream, suggesting that

the C-rich motifs represent the specificity of an

RNA-binding factor.

(C) HepG2 cells were treated either with ctrl or

Nup98#1 and Nup98#2 siRNA for 72 hr, and

300 nM (CPT) was added for the final 24 hr before

RNA extraction. 14-3-3smRNA was measured by

qRT-PCR. The ctrl siRNA and no CPT condition

was taken as 1. Data are presented as mean ± SD

of two independent experiments.

(D) RNA-IP experiment in HepG2 cells was per-

formed as in Figure 4A. Primer pairs specific for

different regions of 14-3-3s mRNA were used to

localize the potential regions of interaction with

Nup98. The rectangle represents the single 14-3-

3s exon, and the shaded area indicates the 30UTR.
The numbers indicate the position of each ampli-

con within the 14-3-3s gene locus. Data are pre-

sented as mean ± SD.
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genome-wide changes in steady-state transcript abundance

in yeast (Foat et al., 2005). The REDUCE software suite (see

Figure 5A and the Experimental Procedures) was used to

discover RNA sequence motifs whose occurrence in 30UTRs
is predictive of the difference in gene expression 72 hr after

doxorubicin treatment, i.e., between cells in which p53 is active

versus inactive (Chau et al., 2009). This yielded a single, highly

significant C-rich motif (Figure 5A), occurrences of which in

the 30UTR are predictive of mRNA stabilization upon p53 activa-

tion (p value = 5 3 10�26). To determine whether the motif

indicates a potential mRNA or genomic DNA binding element,

we analyzed how the correlation with differential gene expres-

sion differed when counting motif occurrences in 400 nt

windows immediately upstream or downstream of polyadenyla-

tion sites in genomic DNA (Figure 5B). The correlation was

significantly higher for the upstream window, suggesting that

the C-rich motif represents the specificity of an RNA-binding
Molecular Cell 48, 799–810, D
factor. The C-rich motif is also robust in

the sense that using other differential

steady-state expression data yields

consistent results. First, occurrences in

the 30UTR correlated significantly with

the difference in mRNA expression 72 hr

versus 48 hr after doxorubicin treatment

in p53-active cells (p = 3 3 10�49) (Chau
et al., 2009). Second, they correlate with the difference in

mRNA expression 24 hr after Nutlin versus mock treatment

(p = 3 3 10�32) (Goldstein et al., 2012).

The above results suggested that the C-rich motif mediates

a posttranscriptional and p53-dependent regulatory signal. We

used this motif to rank a list of 120 bona fide p53 target

genes (Riley et al., 2008) in terms of the total motif score in

their 30UTR (Table S2). We found that 14-3-3s scored the

highest and p21 ranked sixth. Indeed, in HepG2 cells,

Nup98 was required for full 14-3-3s expression (Figure 5C).

Furthermore, as with p21, we were able to coimmunoprecipi-

tate the 14-3-3s mRNA 30UTR with Nup98 (Figure 5D). The

finding that the highest-scoring candidate behaved similarly

to p21 supports the efficacy of this in silico screen, and

increases further the likelihood that Nup98 interaction with

30UTR regions of select p53 target genes contributes to their

stability.
ecember 14, 2012 ª2012 Elsevier Inc. 805
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Figure 6. Nup98 Depletion Increases Camp-

tothecin-Induced Cell Death and Decreases

Nutlin-Induced Senescence

(A) Nup98 knockdown sensitizes cells to CPT-

induced apoptosis. (Upper panels) FACS analysis

was performed with propidium iodide-stained

samples of HepG2 cells following transfection with

control (ctrl) or Nup98 (98#1 and 98#2) siRNAs and

drug treatment as described in Figure 1A. Data

were analyzed using the ModFit program. (Lower

left panel) Bar diagram shows relative percentage

of subG1 cells taken as a measurement of cell

death for each indicated condition. Data are pre-

sented as mean ± SD derived from two indepen-

dent experiments. (Lower right panel) Protein

levels in HepG2 cells treated as above were

analyzed by immunoblotting with indicated anti-

bodies.

(B) p21 knockdown recapitulates the effects of

Nup98 knockdown in CPT-treated cells. (Left

panel) FACS analysis was performed in HepG2

cells as described in (A) following transfection with

p21 siRNA (21#1 and 21#2) and drug treatment.

Bar diagram shows relative percentage (%) of

subG1 cells as a measurement of cell death for

each indicated condition. Data are presented as

mean ± SD derived from two independent exper-

iments. (Right panel) Protein levels in cells treated

as above detected by western blotting with indi-

cated antibodies.

(C) Nup98 knockdown decreases Nutlin-induced

senescence. Sk-Hep1 cells were treated either

with ctrl or Nup98#1 and Nup98#2 siRNA for 24 hr,

and Nutlin-3 (10 mM) was added as indicated

5 days prior to staining senescence-associated

b-galactosidase (SA-b-Gal). Shown are represen-

tative images of cells with SA-b-Gal staining for the

indicated conditions.
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Nup98 Depletion Increases Camptothecin-Induced Cell
Death and Decreases Senescence Mediated by Nutlin
Although p21 is well known for its ability to regulate the cell cycle,

it also functions to inhibit cell death under stress conditions

(reviewed in Abbas and Dutta, 2009). Decreased p21 levels

observed after Nup98 knockdown may sensitize cells to drug-

induced apoptosis. To test this, HepG2 cells were treated

with siRNAs specific for Nup98 or p21 and harvested after

24 hr treatment with CPT followed by FACS analysis. While

there were no major changes in cell-cycle distribution, there

was an increase in cell death after Nup98 knockdown (Fig-

ure 6A). This corresponded well with the results of p21 siRNA-

mediated knockdown, where we observed an even higher

percentage of sub-G1 cells, possibly due to an even greater

reduction of p21 protein levels (Figure 6B). Decreased p21

induction associated with Nup98 depletion is very likely to be
806 Molecular Cell 48, 799–810, December 14, 2012 ª2012 Elsevier Inc.
a contributing factor to the increased

cell death that occurs upon Nup98

knockdown.

Cellular senescence is another impor-

tant p53-mediated and p21-related

cellular outcome (Abbas and Dutta,
2009). After 5 days of Nutlin treatment of control siRNA-trans-

fected Sk-Hep1 cells, there was a strong increase of senes-

cence-associated b-galactosidase activity (SA-b-Gal) (43% ±

15% positive cells) compared to corresponding DMSO-treated

controls (<0.01% positive cells), which were significantly dimin-

ished when Nup98 levels were reduced (12% ± 9% and 16% ±

8%, in cells containing Nup98 siRNA #1 and siRNA#2, respec-

tively) (Figure 6C). Thus Nup98 offers partial protection from

DNA damage-mediated apoptosis, but cells require Nup98 to

undergo senescence mediated by p53.

Nup98 Expression Is Downregulated in an HCC Mouse
Model and in Human Patients with HCC
Other than the H1299 lung carcinoma-derived cell line engi-

neered to inducibly express ectopic p21 (H24 p21 cells), the

only cell lines in which Nup98 reduction repeatedly produced
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Figure 7. Nup98 Expression Is Downregu-

lated in Hepatocellular Carcinomas in

MDR-2–/– Mice and in Patients with HCC

(A and B) Lowered hepatocellular Nup98 immu-

noreactivity in murine tumor tissue compared to

nontumorous tissue. (A) Corresponding represen-

tative liver sections ofMDR-2�/� mice (15 months)

either stained with H&E (upper left and upper right

panel) or immunohistochemically stained with

a polyclonal Nup98 antibody (lower left and lower

right panel). Nontumorous (NT) and tumorous (T)

liver tissue are shown in the left and right columns,

respectively. Black arrows indicate nuclei of

hepatocytes and hepatocellular tumor cells and

blue arrows indicate nuclei of sinusoidal cells and

inflammatory cells. Scale bar represents 100 mm.

(B) Diagram shows median values of semi-

quantiative hepatocellular Nup98 immunohisto-

chemical staining intensities of nontumorous (NT)

and tumorous (T) liver tissue samples of individual

MDR-2�/� mice. Statistical significance was

determined from nonparametric testing (Mann-

Whitney U test, **p < 0.01).

(C) Nup98 expression is downregulated in human

hepatocellular carcinoma. The relative Nup98

mRNA expression in 27 human hepatocellular

carcinoma (HCC) tissue samples (black bars) was

assessed by qRT-PCR and compared to the

similarly assessed averaged expression (hori-

zontal line) of two nontumorous (NT) liver tissues

normalized to 1 (white bars). Red dotted lines

indicate thresholds of 2-fold higher or lower

expression than the averaged expression in nontumorous liver tissue. Relative expression in primary hepatocytes (PHH) is also shown (gray bar). 18 s-rRNA was

used as a housekeeping gene for internal normalization. Data are presented as mean ± SD.

(D) Nup98 and p21 expression are correlated in human hepatocellular carcinoma (HCC). Scatterplot depicts relative Nup98 (x axis) and p21 (y axis) mRNA levels

measured by qRT-PCR in tumors of the same cohort of HCC patients as in (C). Pearson’s correlation coefficient was used as a measure of association.
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a strong effect on p21 levels were derived from liver cancers

(data not shown), suggesting that Nup98 levels may be altered

in hepatocellular carcinoma (HCC). We tested this possibility in

both a murine model of HCC and in tissues from HCC patients

(Figure 7). The multidrug resistance 2 (MDR-2) knockout mouse

is a model for inflammation-associated HCC development and

resembles the human clinical progression of the disease (Mauad

et al., 1994). We analyzed Nup98 expression in tumorous (T) and

nontumorous (NT) mouse liver tissue by immunohistochemistry

(IHC). Strong Nup98 IHC staining was detected at the nuclear

membrane and within the nucleus in hepatocytes (black arrows)

and in the sinusoidal cells (blue arrows) of NT liver tissue (Fig-

ure 7A, lower left panel). Strikingly, while the sinusoidal cells

and the infiltrating inflammatory cells (blue arrows) retained

strong Nup98 IHC staining in the T-liver tissue (Figure 7A, lower

right panel), there was a significant decrease in Nup98 immuno-

reactivity (p < 0.01) of hepatocellular tumor cells (black arrows)

compared to NT tissue (Figure 7A, lower right panel, and see

semiquantitative analysis of hepatocellular Nup98 staining inten-

sity in NT tissue and T tissue of MDR-2�/� mice in Figure 7B).

Thus, Nup98 is substantially downregulated in murine HCC

compared to adjacent nontumorous tissue.

To gain insight into a possible role for Nup98 in human HCC,

we analyzed Nup98 mRNA expression in a cohort of HCC

patients comparing HCC tissue samples with NT liver tissue or
Molec
with primary hepatocytes (Figure 7C). Nup98 expression was

significantly reduced (by a factor of R2 compared to controls)

in 25% of the cases (7/27) and was overexpressed in only 1

out of 27 cases (by R2-fold compared to control levels). More-

over, Nup98 and p21 expression were associated with a correla-

tion coefficient of r = 0.56 (p < 0.01) (Figure 7D), suggesting that

Nup98-dependent regulation of p21may also be relevant in vivo.

It is noteworthy that in a second cohort of HCCpatients we found

a similar expression pattern with downregulation of Nup98

expression compared to nontumorous liver in 39% (13/33) and

upregulation of Nup98 expression in 12% (4/33) of the cases

based on the same thresholds (Figure S4). Again we found

a correlation between Nup98 and p21 expression (r = 0.40; p <

0.05, data not shown). Taken together, these data suggest that

Nup98-dependent regulation of p21 is likely to be generalizable

to a significant fraction of human HCCs.

DISCUSSION

An RNAi screen revealed that interference with the NPC causes

pleiotropic effects on p53 target gene induction. While ablation

of a subset of Nups such as Nup98, TPR (translocated promoter

region), and Nup93 selectively reduced p21 mRNA accumula-

tion, Aladin knockdown selectively increased p21 mRNA induc-

tion. Despite the limitations of this screen (e.g., differences in
ular Cell 48, 799–810, December 14, 2012 ª2012 Elsevier Inc. 807
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knockdown efficiency, secondary structural alterations of the

NPC upon decreased expression of some Nups, etc.) we can

assume that selectively reduced p21 mRNA accumulation

upon Nup98 ablation is not a general phenomenon observed

by depleting any nuclear pore component. Since components

of the NPC modulate the expression of p53 target genes in

different directions, stabilization of p21 mRNA by Nup98 is

unlikely to be the only mechanism that can be envisioned (others

include transcriptional regulation, altered protein import/export,

etc.). This adds another layer of complexity to p53 target gene

selection in general and to p21 expression in particular.

Nup98 prevents p21 mRNA degradation by the exosome.

This might be related to a role for Nup98 in p21 mRNA export.

In fact, a yeast Nup116 deletionmutant exhibits anmRNA export

block and accumulation of nuclear mRNAs (Das et al., 2003). Yet

in our single-molecule FISH analysis of p21 mRNA, Nup98

knockdown does not lead to increased accumulation of nuclear

p21 mRNA. Thus, if knockdown of human Nup98 causes a p21

mRNA export block, this must be tightly coupled to degradation

of p21 mRNA transcripts, most likely by the nuclear exosome.

Indeed, in the Nup116 delta yeast strain, accumulation of nuclear

mRNAs is followed by rapid degradation that can be prevented

by disruption of the nuclear exosome (Das et al., 2003). In our

system, an analogous immediate degradation of unexported

p21 mRNA could account for the observed lowered levels of

both nuclear and cytoplasmic p21 mRNA. A second scenario

can be imagined in which, in addition to its putative effects on

p21 mRNA nuclear stability, Nup98 might independently regu-

late the accumulation of cytoplasmic p21 mRNA. Given the

association of Nup98 with the 30UTR of p21 mRNA, it may recruit

additional factors that stabilize p21 mRNA in the cytoplasm.

In either case, the exosome likely recognizes and degrades

p21mRNA upon Nup98 depletion as a process of mRNA surveil-

lance related either to impaired export or to defects in RNA-

protein complex formation in the 30UTR region. Supporting this

hypothesis, the exosome has been documented to participate

in control mechanisms that remove aberrant RNAs in the nucleus

and in the cytoplasm (reviewed in Houseley et al., 2006). Future

studies will hopefully elucidate the particular stability defect and

subsequent degradation of p21mRNA that occurs in the

absence of Nup98.

Bioinformatics analysis identified a C-rich motif that correlates

with the stabilizing effect of Nup98 on p21 mRNA and 14-3-3s

mRNA. It will be important eventually to determine which other

p53 targets that have high (or low) scores with the C-rich motif

are similarly regulated (or not) by Nup98. Particularly relevant

to our studies, RNA binding proteins including different members

of the poly-C binding protein family (PCBP1, PCBP2, and

PCBP4, the latter being a p53 target gene) are implicated in

p21 mRNA destabilization via binding to its 30UTR (Scoumanne

et al., 2010; Waggoner et al., 2009; Zhu and Chen, 2000). Based

on the observation that basal p21 mRNA levels are not signifi-

cantly affected by Nup98 depletion, perhaps Nup98 competes

with a p21 mRNA destabilizing factor that is induced by p53,

such as MCG-10 (poly C binding protein 4) (Zhu and Chen,

2000). Alternatively, p21 protein induction may repress expres-

sion of a stabilizing factor of its own mRNA. Under basal condi-

tions, this factor could compensate for the loss of Nup98.
808 Molecular Cell 48, 799–810, December 14, 2012 ª2012 Elsevier
However, under induced conditions (e.g., CPT), this factor would

be unavailable to stabilize p21 mRNA due to its depletion via

p21-dependent mechanisms. Finally, posttranslational modifi-

cations of Nup98 upon p53/p21 activation may be required for

the stabilizing effect on the p21mRNA transcript. Exploring

aspects of these proposed scenarios will be of considerable

interest for further studies.

Data from the murine HCC model, combined with data from

both cohorts of HCC patients (Figure 7 and Figure S4), suggest

that itmaybeadvantageous for tumors to loseNup98expression,

i.e., that Nup98 acts under certain circumstances as a tumor

suppressor in hepatocarcinogenesis. In line with this is the

observation that p53-mediated induction of senescence, an

important liver tumor-suppressive response (Xue et al., 2007), is

impaireduponNup98depletion (Figure6).However,morestudies

including mouse models with a liver-specific conditional Nup98

knockout are required to draw firm conclusions about tumor-

suppressive functions of Nup98 that might be context and stress

specific. In fact, sinceup to 12%ofHCCpatients showedoverex-

pression of Nup98, it is quite possible that Nup98may play a dual

role in cancer formation as does p21 or, even more intriguingly,

through p21. The latter could be supported by the correlation of

Nup98 and p21 expression in both patient data sets. We expect

that future studies will elucidate the specific circumstances

under which Nup98 may act as barrier to cancer formation.

EXPERIMENTAL PROCEDURES

Cell Culture and Drug Treatment

HepG2 cells were maintained in RPMI medium supplemented with 10% fetal

bovine serum (FBS). Hep3B cells and the derivatives Hep3B-4Bv (expressing

the temperature-sensitive p53val135 mutation) were kindly provided by

M. Oren (Friedman et al., 1997) and maintained in MEM with 10% FBS (and

1 mg/mL puromycin for Hep3B-4Bv). H1299 cells and their derivative tet-off

H24-p21-inducible cell line were previously described (Niculescu et al.,

1998) and were maintained in DME medium with 10% FBS and tetracycline

(5 mg/ml). p21 expression was induced by removing tetracycline 48 hr

before harvesting the cells. H1299 PUMA-inducible cells (tet-on) were gener-

ously provided by K. Vousden (Nakano and Vousden, 2001) and grown in

DME with 10% FBS. PUMA expression was induced by adding Doxycycline

(2 mg/mL) 24 hr before harvesting. CPT, Nutlin-3a, and Actinomycin D (Sigma)

were used as indicated.

Transfections and Plasmids

siRNA transfection assays were performed with DharmaFECT 1 (Dharmacon)

or Oligofectamine (Invitrogen). siRNA duplexes, designed and synthesized by

QIAGEN, were used individually at 50 nM (sequences are listed in Table S3).

The QIAGEN All-Stars duplex was used as the negative control siRNA for all

knockdown experiments besides the p21 mRNA half-life experiment, where

Luc siRNA was used. HA-Nup98 was generously provided by Dr. N.R. Yaseen

(Washington University School of Medicine, USA). GFP-Nup98 full length,

GFP-Nup98 C terminus (506–920), GFP-Nup98 GLFG+C terminus (221–

920), and GFP-Nup98 GLFG(C)+C terminus (362–920) were as described

(Griffis et al., 2004). HA-Nup96 was kindly provided by Dr. B. Fontoura (UT

Southwestern Medical Center, USA). cDNAs encoding p21 full length (FL),

PUMA full length (Pu FL) including the respective 50UTRs and 30UTRs, and
p21 lacking the 30UTR were amplified by PCR with a Platinum Pfx DNA poly-

merase (Invitrogen) using cDNA from HepG2 cells as template. The resulting

p21 FL and p21 delta 30UTR cDNAs were then cloned into a pcDNA3.1 vector

(Invitrogen). The Pu/p21 hybrid construct was generated by amplifying the

PUMA CDS (including the 50UTR) and p21 30UTR from the respective FL

constructs, that were sequentially cloned into a pcDNA3.1 vector (Invitrogen).

The Luc/p21 30UTR and Luc control were as described (Giles et al., 2003).
Inc.
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Transient plasmid transfections were done with Lipofectamin2000 (Invitrogen)

according to the manufacturer’s protocol.

Quantitative Reverse Transcription-Polymerase Chain Reaction

RNA was isolated from cells with the QIAGEN RNeasy Mini kit and was DNase

treated and reverse transcribed using the QIAGEN Quantitect reverse tran-

scription kit. Samples were analyzed on an ABI 7300 real-time PCR instrument

with default settings using the DDCT method. Expression levels were normal-

ized to those of RPL32 or 18 s RNA (patient samples). Primers used were

designed with Primer Express (Applied Biosystems), and sequences are listed

in Table S4.

Immunoblots and Antibodies

Cells were harvested and subjected to immunoblotting as previously

described (Ohkubo et al., 2006). Commercial antibodies used in the study

are listed in Table S5. Nup98 rabbit polyclonal antibody was kindly provided

by Dr. G. Blobel (Rockefeller University, USA), and Nup96 rabbit polyclonal

antibody was a kind gift from Dr. Joseph Glavy (Stevens Institute of Tech-

nology, USA). Signal detection was performed by the using the Odyssey

Infrared Imaging System (LI-COR).

Immunofluorescent Staining

HepG2 and H24 p21 cells were grown on coverslips and treated with drugs as

indicated. Immunofluorescent staining was performed as previously described

(Karni-Schmidt et al., 2007). Nup98 (C-5; Santa-Cruz) was used as primary

antibody followed by Alexa Fluor 488 rabbit anti-mouse secondary antibody

(Molecular Probes, Eugene, OR). Images were analyzed by confocal laser

scanning microscopy (Olympus model 1381) using Fluoview software (Canter

Valley, PA).

Fluorescence-Activated Cell Sorting

Cells were processed with slight modifications as described before (Ohkubo

et al., 2006). Cell-cycle stages were analyzed by using the ModFit LT version

3.0 program, and subG1 fractions were analyzed using Cell Quest Pro.

Fluorescence In Situ Hybridization

To detect p21mRNA, 14 oligodeoxynucleotide probes were designed, synthe-

sized, and labeled as previously described (Femino et al., 1998). Each probe

had a length of 50 nt and contained five amino-modified nucleotides (amino-

allyl T). The free amines were chemically coupled to cyanine 5 fluorescent

dye after synthesis. The sequences of probes used to detect p21 mRNA are

available upon request. mRNA-FISH was performed based on a published

protocol (http://www.singerlab.org/protocols). For further information, see

the Supplemental Experimental Procedures.

RNA Immunoprecipitation

RNA-IP was performed using a published protocol (Kaneko andManley, 2005)

with slight modifications. Further information is provided in the Supplemental

Experimental Procedures.

Animals and Immunohistochemical Staining

MDR-2�/� animals were described previously (Mauad et al., 1994). Liver tissue

of 15-month-old male MDR-2�/� mice was immunostained based on a pub-

lished protocol (Singer et al., 2007) by using a polyclonal Nup98 antibody.

For additional information, see the Supplemental Experimental Procedures.

MDR2�/� mice were housed under specific pathogen-free conditions. The

procedures for performing animal experiments were in accordance with the

principles and guidelines of the Arbeitsgemeinschaft der Tierschutzbeauf-

tragten in Baden-Württemberg and were approved by the Regierungspräsi-

dium of Karlsruhe, Germany. Staining intensity of nontumorous and tumorous

tissue was evaluated by a pathologist using a semiquantitative score: 0 = no,

1 = weak, 2 = moderate, 3 = strong, and 4 = very strong staining. The median

score out of up to five high-power fields was calculated.

Patient Data

Total RNA isolation of HCC samples (n = 27 and n = 33) and healthy liver tissues

(n = 2 and n = 5) of both cohorts for semiquantitative real-time PCR was per-
Molec
formed using the NucleoSpin RNA II kit according to the manufacturers’

protocol (Macherey-Nagel, Duren, Germany). The study was approved by

the institutional ethics committee of the Medical Faculty at Heidelberg

University.

Motif Discovery

We used the MatrixREDUCE program from the REDUCE software suite (http://

bussemakerlab.org/software/REDUCE) to perform a genomewide fit of a posi-

tion-specific affinity matrix (PSAM) to the logarithm of mRNA expression fold-

differences between wild-type cells and p53 knockdown cells (after 72 hr). For

the sequence associated with each log ratio, we used the March 2006 version

of human 30UTRs from the UCSC genome website (http://genome.ucsc.edu).

Genes with overlapping 30UTRs were filtered out. In the PSAM search,

we considered motif lengths from 1 to 10 and used a p value threshold of

0.001. To rank the p53 target genes, we calculated the total affinity of

the 30UTR using the AffinityProfile program from the REDUCE suite to score

the enrichment of each 30UTR for the discovered C-rich motif. Total relative

affinities were calculated as the sum of PSAM-based predicted affinities in

a sliding window over the length of the 30UTR. We controlled for variation in

30UTR length by dividing the total affinity by the UTR length and used the

resulting affinity density to rank the list of published p53 targets (Riley et al.,

2008).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, five tables, and Supplemental

Experimental Procedures and can be found with this article at http://dx.doi.

org/10.1016/j.molcel.2012.09.020.
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