

Machine Learning: A brief introduc�on to Gradient Boos�ng

Overview: In the Introduction to Random Forest tutorial, we reviewed decision

trees, which are the building blocks for a Random Forest. Decision trees are also the

building blocks for Gradient Boosting, but in a very different way.

What is Gradient Boosting?

Like Random Forest, Gradient boosting is also an ensemble of decision trees. Unlike

Random Forest however, which is focused on an ensemble of high variance (i.e.: fully-

grown) trees, Gradient Boosting is focused on an ensemble of very shallow trees

(sometimes called decision stumps).

Suppose we have a data set consisting of 100 patients with a tumor diagnosed, which can

be further classified into one of two distinct subtypes. Fig 1 is an example of a very

shallow decision stump with a goal of predicting whether a patient with a particular

tumor has subtype A or B. From this decision tree, we can assume that age has some

association with whether a patient has tumor subtype A or B. Recall, the decision tree

fitting process will select the best predictor and cut point from the set of available

predictors using some criterion of node purity to define “best”.

 Fig 1. Example of a decision stump.

The decision stumps used in gradient boosting can be, and often are, deeper than this.

Especially if we want to allow interactions between variables. For example, if we wanted

to model the interaction between age and diabetes status, we could fit a decision tree with

an additional level.

Fig 2. Example of a decision tree with an interaction effect. The presence of

diabetes only impacts prediction when the patient is under 60 years old.

Parent node:

All pa�ents

N=100

Age < 60

Age ≥ 60

Age < 60 Age ≥ 60

Subtype A: 60%

No Diabetes

Subtype A: 5%

Diabetes

Subtype A: 95%

All pa�ents

Subtype A: 50%

A shallow decision stump (like what we have above in Fig 1 and 2) is what is called a

low variance, high bias classifier. This means that if we sampled repeatedly from the

target population (theoretically that is; we mean that if we have many similar data sets

consisting of a random sample of patients from the population of patients with the

disease of interest) and fit a decision stump each time to predict subtype A vs B, we likely

would not get much variation in our resulting predictions (low variance). Additionally,

we likely would not predict tumor subtype very well (high bias) because we have made the

prediction function too simplistic (age < 60 is probably not the only discriminator of

whether someone has tumor subtype A or B).

An extreme example of a high bias/low variance classifier is if we used the sample

proportion to predict subtype. In our sample, we have 40% of patients with subtype A. If

we used this as a simple prediction tool, we would simply assign a probability of subtype

A of 40% to every new patient. While this is indeed likely to be low variance (predictions

based on subtype A proportion would not vary too wildly from 40% in similar samples), it

is also high bias because it is likely much too simple of a prediction tool compared to the

true function that gives rise to tumor subtypes.

With Random Forest, we combine low bias, high variance trees with lots of leaves

(nodes) to yield a powerful low bias and low variance (through the averaging process)

classifier. Gradient boosting is combining high bias, low variance trees. But unlike

Random Forest, Gradient Boosting is not just taking a simple average across the trees in

the ensemble to build a powerful classifier. So… what is it doing?

General steps in Gradient Boosting:

1. Predict outcome and compute the log odds of prediction based on the sample

proportions in the input data set

2. Compute the residuals from this naïve prediction

3. Build decision tree # 1 using the residuals in the previous step as the outcome

variable

4. Obtain the predictions from decision tree # 1 and compute the log odds

5. Use the new residuals to build decision tree # 2

6. Obtain the predictions from decision tree # 2 and compute the log odds

7. Repeat until prediction does not improve

Gradient Boosting is therefore carefully building an ensemble of shallow decision trees

that are improving prediction (getting the predicted value closer and closer to the true

value) with each new decision tree built from the residuals of the previous tree.

Let’s go back to the tumor subtype example:

 Fig 3. Tumor Subtype example

Parent node:

All pa�ents

Pr(subtype A) = 0.40

Pr(subtype B) = 0.60

Let’s create an indicator variable for subtype A. Y=1 when a patient has subtype A, 0 is

subtype B.

Step 1: Get the initial prediction and log odds

Based on the overall proportion of subtype A in the data, our best (naïve) prediction for a

new patient using no additional variables would be 0.40, and correspondingly the natural

log of the odds would be ln(0.40/(1-0.40)) = ln(0.667) = -0.405.

Step 2: Compute the residual (Yi – predictioni) for patient i in the sample

(i=1,2,…100)

Recall, patients with subtype A were assigned a value of 1 and subtype B assigned a value

of 0. Therefore, the residuals of the initial prediction of 0.40 are (1-0.40) = 0.60 for

people with tumor subtype A and (0-0.40) = -0.40 for people with tumor subtype B. The

prediction 0f 0.40 is the same for everyone right now because it is based only on the

observed proportion of subtype A tumors in the data. Later in the process, the

predictions will vary across patients based on their specific covariate patterns.

Step 3: Build a decision tree using the residuals as the new outcome variable

It is important to note here that we are using a regression decision tree, not a

classification decision tree, because we are modeling the residuals (which will be

continuous) we found in step 2. Patients with subtype A have positive residuals while

patients with subtype B have negative residuals. The goal here is find a variable that

splits the data into two daughter nodes such that large positive residuals will all be in one

node and the negative residuals will all be in the other node without much overlap.

We have collected many data points for each patient (demographics, tumor

characteristics, comorbidities, etc.) that are potential predictors of the residual. A

decision tree automatically finds the best splitting variable and cutpoint at each node to

create daughter nodes with lowest mean square error. Recall, we use the Gini Index to

measure purity in the classification tree.

Fig 3 shows the resulting decision stump after this process. As you can see, age contains

some relevant information because node 1 contains patients < 60 years old and many of

the positive residuals. Node 2 contains patients 60 and older and many of the negative

residuals.

 Fig. 3: The first decision stump for Gradient Boosting

Node 1:

Age < 60

Subtype A: n=25 (residual = 0.60)

Subtype B: n=5 residual=-0.40)

Average residual= 13/30 = 0.4333

Node 2:

Age ≥ 60

Subtype A: n=15 (residual = 0.60)

Subtype B: n=55 (residual=-0.40)

Average residual =-13/70 -0.186

Parent node:

All pa�ents

Pr(subtype A) = 0.40

Pr(subtype B) = 0.60

Step 4: Compute the updated log odds and probabilities

For each daughter node we first compute the following over all k observations in the

node:

𝛾𝛾 =
∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑘𝑘
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖 (1 − 𝑝𝑝𝑖𝑖)𝑘𝑘
𝑖𝑖=1

where p is the previous predicted probability for individual i in the node

In node 1 we get:

 𝛾𝛾 = �
(25 𝑥𝑥 0.60)+ (5 𝑥𝑥 −0.40)�
�30 𝑥𝑥 0.40 𝑥𝑥 (1−0.40)�

= 13
7.2

= 1.806

And in the right daughter node (node 2), consisting of patients 60+ years old the log

odds:

𝛾𝛾 =
(15 𝑥𝑥 0.60) + (55 𝑥𝑥 − 0.40)

(70 𝑥𝑥 0.40 𝑥𝑥 (1 − 0.40))
= −13/16.8 = −0.774

Finally, we can compute the updated log odds in node k:

 Updated log odds in node k = previous log odds + learning rate x 𝜸𝜸

The learning rate tells us how much we are going to update those log odds due to the

predictions from the new decision stump. We will set it to be 0.10 for now.

 Updated log odds = -0.405 + (0.10 x 1.806) = -0.225 for node 1

 Updated log odds = -0.405 + (0.10 x -0.774) = -0.483 for node 2

Converting back to probabilities (exp(log odds)/(1+exp(log odds))) we get our new

prediction of 44.4% for patients in node 1 and 38.2% for patients in node 2.

For a patient who is 54 years old, the original (naïve) predicted probability

for subtype A was 40%, which was updated after the first decision tree to be

44.4%.

While the predicted probability was raised, it was not raised nearly as much as it could

have been given the new decision tree has 83% subtype A in node 1. This is where the

learning rate comes in. Gradient Boosting does not allow each new prediction to

change our previous prediction too much, especially when we specify a small learning

rate. We therefore need more decision trees to really improve these predictions,

especially with smaller learning rates.

Step 5: Use these new probabilities to compute a new set of residuals and

then fit a decision tree.

For a patient who has subtype A and is 54 years old, the true status is 1.0 and the

predicted status is 0.444. The residual therefore is 1-0.444 = 0.556. For a patient who is

age 80 years old, the residual is 1-0.3823 = 0.618.

For a patient with subtype B who is 54 years old the residual is 0-0.444 = -0.444 and for a

patient who is 80 years old the residual is 0-0.382 = -0.382.

We use these new residuals to compute decision tree #2. Suppose we get the tree

below, which now separates the data based on diabetes status:

 Fig. 4: The second decision tree for Gradient Boosting

Step 6: Obtain the predictions from decision tree # 2 and compute the log

odds

Just as before, we need to compute the 𝛾𝛾 value for the new nodes. For brevity, we will

compute the value for node 1 and leave the computation for node 2 up to you:

For node 1 (diabetes=no):

 𝛾𝛾 = �
(25 𝑥𝑥 0.556)+ (5 𝑥𝑥 0.618)+(5𝑥𝑥(−0.382))+(5𝑥𝑥(−0.444))�

(30 𝑥𝑥 0.444 𝑥𝑥 (1−0.444)+10 𝑥𝑥 0.382 𝑥𝑥 (1−0.382)) = 1.317

 Updated log odds = -0.225 + (0.10 x 1.317) = -0.093 for node 1

Converting back to a probability, we see that for a 54 year-old patient

without diabetes, the probability of tumor subtype A is now predicted to be

exp(-0.093)/(1+exp(-0.093)) = 0.477

To recap, for this patient, the probability of tumor subtype A was originally 40%, updated

to 43.3% after the first decision stump was taken into account, and is now 47.8% after the

Node 1: Diabetes =no

Subtype A < 60: n=25 (residual = 0.556),
60+: n=5 (residual=0.618)

Subtype B <60: n=5 (residual=-0.444)

60+: n=5 (residual=-0.382)

Node 2: Diabetes=yes

Subtype A < 60: n=0
60+: n=10 (residual=0.618)

Subtype B <60: n=0

60+: n=50 (residual=-0.382)

All pa�ents

Pr(subtype A) = 0.40

Pr(subtype B) = 0.60

second decision tree. So moving in the right direction! Additional trees, using other

combinations of informative predictors, will likely refine this prediction even more (Step

7 – repeat until prediction does not improve).

In summary, Gradient Boosting is a powerful algorithm for classification that

uses weak decision trees (sometimes called decision stumps) successively, reducing

previous errors. Even if you do not care about the math behind Gradient

Boosting, knowing the general algorithm will give you a good sense of what is

going on and why a statistician or data scientist may suggest building a

prediction model using Gradient Boosting. Some hyperparameters you need to

think about for Gradient Boosting are the depth of the trees, how many trees you want to

use, and the learning rate.

Where can I read more about these different classifiers?

There are many excellent online resources that will allow you to more fully

understand machine learning and the various algorithms used.

