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Fungal killing by mammalian phagocytic cells
André Moraes Nicola, Arturo Casadevall and David L Goldman
Phagocytes are considered the most important effector cells in

the immune response against fungal infections. To exert their

role, they must recognize the invading fungi, internalise, and kill

them within the phagosome. Major advances in the field have

elucidated the roles of pattern-recognition receptors in the

innate immunity sensing and the importance of reactive oxygen

and nitrogen species in intracellular killing of fungi. Surprising

exit mechanisms for intracellular pathogens and extracellular

traps have also been discovered. These and several other

recent breakthroughs in our understanding of the mechanisms

used by phagocytes to kill fungal pathogens are reviewed in

this work.

Addresses

Albert Einstein College of Medicine, 1300 Morris Park Avenue,

Forchheimer Building, Room 411, Bronx, NY 10461, USA

Corresponding author: Nicola, André Moraes (anicola@aecom.yu.edu),

Casadevall, Arturo (casadeva@aecom.yu.edu)

and Goldman, David L (dgoldma@aecom.yu.edu)
Current Opinion in Microbiology 2008, 11:313–317

This review comes from a themed issue on

Hosticrobe interactions: fungi

Edited by David Underhill

Available online 21st June 2008

1369-5274/$ – see front matter

Published by Elsevier Ltd.

DOI 10.1016/j.mib.2008.05.011

Introduction
A diverse group of fungi is known to infect humans.

These organisms range from small unicellular yeasts to

those that produce long filamentous hyphae and come

from several different phyla, indicating the great evol-

utionary distance between them. The diseases they cause

are equally diverse, ranging from simple self-limited,

subclinical flu-like illnesses and superficial skin or muco-

sal infections to life-threatening systemic mycoses.

Despite this great variability, fungal infections share a

common theme with respect to the central role of pha-

gocytes in the host response.

The incidence of fungal infections has been steadily

rising in the past decades owing to a variety of

factors, including the AIDS epidemic. Cryptococcus neo-
formans, Pneumocystis jirovecii, and Histoplasma capsula-
tum are major pathogens for patients with AIDS.

Improvements in healthcare, such as the advent of

immunosuppressive therapy for transplant recipients,
www.sciencedirect.com
novel immunotherapies for rheumatologic conditions

and cancer chemotherapy, have also led to an increase

in fungal infections.

Fungi infect humans via several different routes, in-

cluding: attachment and invasion of damaged skin, inha-

lation and deposition in the respiratory tract, and direct

inoculation into deep tissues. Regardless of the route of

infection, macrophages play a primary role in the initial

interaction between host and pathogen. Other phagocytic

cells, such as neutrophils and dendritic cells (DCs), are

also intimately involved in the initial host–pathogen

interaction.

The increased incidence of fungal diseases has led to a

surge of interest in their pathogenesis, a topic that has

been the subject of extensive reviews [1,2]. The objective

of this article is to review the most recent studies on the

role of phagocytes in immunity to fungi.

The interaction between phagocytes and fungi can be

divided into fungal recognition, phagocytosis, and intra-

cellular killing. In addition, phagocytes have evolved

mechanisms for phagocytosis-independent killing of fungi.

Each of these subjects will be reviewed in more detail.

Recognition of fungi

Macrophages, neutrophils, and DCs are innate immune

system phagocytic cells, and as such, non-specific

immune effectors. This paradigm has been questioned

by the discovery of pattern-recognition receptors (PRRs),

such as toll-like receptors (TLRs) and lectin receptors

(LR). These receptors recognize pathogen-associated

molecular patterns (PAMPs) that are commonly found

in a wide range of pathogens but not on the mammalian

host. As a group, fungi share surface structural features

including b-glucans, chitin, and mannoproteins that could

allow recognition by a common set of receptors. The

engagement of TLR and LR by fungi leads to phagocy-

tosis, generation of anti-fungal molecules, and cytokine

production.

A single fungal species can be recognized by different

PRRs. Candida albicans, for instance, has been shown to

bind to TLR1, TLR2, TLR4, TLR6, TLR9, mannose

receptor (MR), Dectin-1, Dectin-2, galectin 3, as well as

to the lectin domain of complement receptor 3 (CR3)

(reviewed in reference [3]). Binding of cell-wall b-glucan

to Dectin-1 on the surface of macrophages induces pro-

duction of both anti-inflammatory interleukin 10 (IL-10)

and pro-inflammatory tumor necrosis factor-alpha (TNF-

a) cytokines [4]. It may also be involved in induction of
Current Opinion in Microbiology 2008, 11:313–317
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Figure 1

Phagocytosis of C. neoformans murine macrophage-like J774 cells and

C. neoformans labeled with cell-tracer dyes were incubated in the

presence of opsonizing antibody. Some fungal cells have already been

internalized, while others are only attached to the cell membrane.
eicosanoid inflammation mediators in macrophages [5]

and NADPH oxidase activation in DCs [6], generating

fungicidal reactive oxygen species (ROS). The import-

ance of Dectin-1 in the host response to C. albicans,
though, is unclear. Two studies using Dectin1-knockout

mice reported contradicting results in susceptibility to C.
albicans infection [7,8].

The role for mannan receptors TLR2 and TLR4 has also

been under intense scrutiny. TLR2 was proposed to be

important in immunity against C. albicans, while TLR4

was not [9]. However, studies with knockout mice and

mutant C. albicans strains have shown the importance of

TLR4 [10��]. Galectin-3 is a b-1,2 mannan receptor that

specifically recognizes the pathogenic yeast C. albicans
but not the non-pathogenic Saccharomyces cerevisiae [11]

and exerts direct fungicidal effect [12]. TLR1 and TLR6,

known to form heterodimers with TLR2, have been

recently shown to have no or mild effect on macrophage

recognition of C. albicans [13].

Another pathogen for which PRRs recognition is exten-

sively studied is the filamentous mold Aspergillus fumiga-
tus. TLR2 and TLR4 bind A. fumigatus cell-wall

components and induce cytokine expression in a

MyD88-dependent fashion [14]. TLR2 and Dectin-1

have been implicated in the differential recognition of

resting conidia and germ tubes [15] and in the phagocy-

tosis by macrophages [16]. However, studies with knock-

out mice have shown that phagocytes derived from

immunocompetent hosts can still control infection with

conidia in TLR2, TLR4, and MyD88 knockouts [17]. A.
fumigatus has also been shown to contain unmethylated

CpG DNA sequences that bound TLR9 and induce

secretion of pro-inflammatory cytokines by DCs [18].

Binding to PRRs has been also documented with other

fungi. C. neoformans activates dendritic cells via TLR9

[19] and DC-SIGN [20]. In contrast to other fungi, it does

not induce signaling through Dectin-1 [21] or TLR4 [22]

and only mildly affects cytokine expression via TLR2

[22]. P. jirovecii, on the contrary, requires Dectin-1 [7],

TLR2, [23] and MR, to induce cytokine release by

phagocytes.

Phagocytosis

Following recognition of fungi as non-self, phagocytes

attempt to internalize these organisms and transfer them

into phagosomes (Figure 1). This allows local delivery of

microbicidal molecules and restriction of essential nutri-

ents leading to pathogen death while minimizing damage

to neighboring cells.

The first step in phagocytosis is the attachment of the

pathogen to the phagocyte. This attachment can be

mediated either directly via PRRs or indirectly through

opsonins, molecules that bind to the pathogen and are
Current Opinion in Microbiology 2008, 11:313–317
recognized by surface receptors in the phagocyte. The

most studied opsonins are complement proteins and

immunoglobulins (Ig), although recent reports also high-

light the role of mannose-binding lectin (MBL) and

surfactant protein A (SP-A) in opsonization of fungal cells.

MBL binds mannans in the cell walls of C. albicans both in
vitro and in vivo [24], leading to complement deposition

via the lectin pathway and subsequent phagocytosis

[24,25]. By contrast, MBL binding to Blastomyces derma-
titidis masks 1,3-beta-glucan recognition by macrophages,

hindering the secretion of TNF-a [26]. In C. neoformans,
mannans recognized by the MBL are concealed by the

capsule [27], which also hides SP-A binding sites [28].

However, SP-A binding to encapsulated C. neoformans is

facilitated by IgG, an effect that does not appear to be

significant to immunity because SP-A knockout in mice is

not disease-enhancing [28]. The cryptococcal capsule

(Figure 2), one of its most important virulence factors,

also hides cell-wall-associated complement binding sites,

inhibiting complement-mediated phagocytosis [29].
www.sciencedirect.com
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Figure 2

Phagocytosis of encapsulated C. neoformans by J774 cells. Murine

macrophage-like J774 cells were infected with IgG-opsonized C.

neoformans and stained with anti-capsule antibody (red) and cell-wall-

binding Uvitex 2B (blue).
In addition to innate immunity opsonins, adaptive anti-

bodies arise during the course of fungal infections. These

proteins have a greater versatility in binding specificities

and are gaining increasing attention owing to evidences of

their importance in immunity to fungal infections [30].

Antibody-coated C. albicans yeasts and germ tubes are

internalized and killed more effectively than non-opso-

nized cells [31]. Antibody-mediated in vitro phagocytosis

of C. neoformans has been linked to macrophage cell cycle

progression [32].

Intracellular killing

Fungicidal molecules in the phagosome can be classified

as oxidative (e.g. hydrogen peroxide, nitric oxide (NO),

and oxygen- and nitrogen-derived oxidants) and non-

oxidative (e.g. anti-fungal peptides and enzymes). While

these mechanisms have been known for a long time

[1,33], some interesting findings have been recently

reported. In general, suppression of nitric oxide gener-

ation has been associated to impaired anti-fungal defense.

Fernandes et al., though, have recently shown that it has a

beneficial effect in Sporothrix schenckii murine infection

[34��]. Also, the absence of ROS resulting from phagocyte

NADPH oxidase depletion reduced fungal dissemination

and protected mice against C. neoformans infection [35��].
By contrast, mice deficient in neutrophil myeloperoxi-

dase, an enzyme that generates toxic hypohalous acids
www.sciencedirect.com
from H2O2 and halides, exhibited marked increase in

dissemination and death caused by C. neoformans [36�].

Acidification of the macrophage phagosome is also an

important tool in killing fungal pathogens. Newman et al.
have shown that murine macrophages require phagoso-

mal acidification to kill H. capsulatum cells, whereas

human macrophages do not [37]. Acidification has also

been shown to be necessary for recruitment of CD63, a

molecule that participates in antigen presenting by class

II major histocompatibility complex (MHC), to C. neofor-
mans-containing phagosomes [38].

The microbicidal effects of toxic molecules in the phago-

some are augmented by the restriction of essential nutri-

ents to the pathogen [39]. The most studied of these

nutrients is iron, which is essential for growth by all

microorganisms. Very low amounts of free iron are usually

available in tissue fluids, with the element being largely

bound to storage proteins. Phagocytes use additional iron-

binding proteins to further reduce the iron availability.

One of these proteins, lactoferrin, has been recently

shown to be one of the fungicidal tools used by PMNs

to control A. fumigatus [40]. Recent studies on the tran-

scriptional response of fungi to phagocytosis have also

demonstrated the lack of other nutrients as well.

Engulfed C. neoformans cells induce expression of 19

sugar, phosphate, vitamin, purine, ammonium, aminoa-

cid, and iron transporters, as well as the glyoxylate cycle

[41], necessary for the utilization of alternative carbon

sources. Studies with Paracoccidioides brasiliensis demon-

strate induction of amino acid synthesis enzymes uptake

transporters, as well as the glyoxylate cycle in cells

recovered from in vitro infected macrophages [42,43].

The importance of oxygen depletion has also been

recently stressed by studies with C. neoformans mutants

sensitive to hypoxia, which were hypovirulent [44,45].

In response to all of the tool phagocytes use to promote

intracellular killing, fungi evolved a long list of escape

mechanisms. A recent addition to this list is the phenom-

enon of phagosomal extrusion or expulsion [46�,47�], in

which internalized C. neoformans is expelled from macro-

phages and both cells remain alive.

Non-phagocytic killing

Phagocytes can also kill fungi using phagocytosis-inde-

pendent mechanisms. This is readily apparent in the case

of filamentous fungi, in which a single hypha is much

larger than the phagocyte itself and cannot be ingested.

Neutrophils are most frequently associated with extra-

cellular killing mechanisms that involve the release of

large amounts of ROS and granule components in the

extracellular medium (reviewed in reference [2]). A

recent report with A. fumigatus and Rhyzopus oryzae
hyphae has shown that this process is probably regulated

by pathogen recognition systems. Human PMNs
Current Opinion in Microbiology 2008, 11:313–317
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produced equivalent amounts of superoxide anion in

response to both, but released larger quantities of ROS

when challenged with A. fumigatus [48].

Two novel mechanisms of extracellular neutrophil-

mediated immunity have been recently discovered. Bon-

net et al. have shown that neutrophils form aggregates

around A. fumigatus conidia and that this aggregation

inhibited conidial germination in a NADPH oxidase-de-

pendent manner [49]. Another mechanism, named neu-

trophil extracellular trap (NET), has been described in

defense against bacteria [50]. These NETs are composed

of chromatin-based web of fibers studded with toxic

components of the PMN granules, which restricts the

pathogen in a highly toxic environment. NETs have been

identified in immunity to several bacteria, in auto-immu-

nity and even in fertility (reviewed in reference [51]). So

far, C. albicans is the only fungal pathogen known to

induce the formation of NETs that mediate killing of

both yeast and hyphal forms [52].

Conclusions
Our review of the literature reveals a striking diversity in

the interactions between phagocytic and fungal cells.

Several different mechanisms are used by phagocytes

to kill and/or inhibit pathogens. The past two years have

produced great advances in our knowledge about how

pathogens are recognized through PRRs and how this

recognition shapes intracellular killing and cytokine

secretion. A large body of evidence has emerged in

studies with C. albicans and A. fumigatus, but information

for other important fungal pathogens is still scant. In

parallel, technical advances in genetic engineering, geno-

mics, and cell biology have also contributed to extending

our understanding of phagocytosis and subsequent

pathogen killing.
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