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INTRODUCTION
At one time or another we have each become lost—maybe 
in a new city, heading in the wrong direction or walking in 
circles on the way to the hotel. In contrast, most of us can 
travel to and from work each day without any problems, 
often arriving with little recollection of the journey we took 
and the decisions we made along the way. Remembering 
and navigating environments is of great importance for 
humans and animals alike, yet we often take it for granted. 
We tend not to appreciate our ability to navigate envi-
ronments until we get lost in a new city, or when our abil-
ity to navigate is compromised by Alzheimer’s disease 
(Henderson, Mack, & Williams, 1989) or other forms of 
dementia.

In this review I will discuss advances in the study of spatial 
navigation, including results from experiments in both ani-
mals and humans. Many methods have been used, includ-
ing behavioral, neuropsychological, electrophysiological, 
neuroimaging, and computational modeling. I will intro-
duce reinforcement learning, which is one aspect of theo-
retical neuroscience that has only recently been applied in 
studies of spatial navigation in humans and animals.

Navigation has been studied for a long time; it had many 
early breakthroughs, such as those of Tolman (1948), who 
interpreted both his own results (Tolman, Ritchie, & Kalish, 
1946) and those of others (e.g., Blodgett, 1929) as evi-
dence that a rat has an internal allocentric representation 
of space, or a cognitive map of its environment. Many of 
the major breakthroughs in our understanding of the neu-
ral representation of space—notably the discovery of place 
cells—have come from animals. These pyramidal cells in 
the rat hippocampus fire selectively in particular areas of 
the animal’s environment (O’Keefe & Dostrovsky, 1971) 
and have been interpreted as a possible neural basis for 
Tolman’s cognitive map (O’Keefe & Nadel, 1978), allowing 

the animal to navigate around obstacles or take shortcuts. 
More recently, head-direction cells, first found in the post-
subiculum (Taube, Muller, & Ranck, 1990), and entorhinal 
grid cells (Hafting, Fyhn, Molden, Moser, & Moser, 2005), 
were discovered, the latter of which may form the basis 
of a path integration-based representation of the animal’s 
environment. It is not completely clear how these findings 
relate to human navigation, although work has been done 
to find evidence for homologues of these cells in humans—
for example, place cells (Ekstrom et al., 2003) and grid cells 
(Doeller, Barry, & Burgess, 2010).

SPATIAL MEMORY AND NAVIGATION

Neural Substrates of Spatial Memory
Since the case of patient H.M., who underwent a bilat-
eral medial temporal lobectomy for intractable epilepsy, 
the medial temporal lobe (MTL), and the hippocampus 
in particular, have been associated with episodic memory 
(Scoville & Milner, 1957). In concordance with the discovery 
of place cells, and the idea of a cognitive map, the hip-
pocampus is thought to be involved in spatial memory in 
animals (O’Keefe & Nadel, 1978; Morris, Garrud, Rawlins, 
& O’Keefe, 1982) and humans (Maguire, Burke, Phillips, & 
Staunton, 1996; Spiers, Burgess, Hartley, Vargha-Khadem, 
& O’Keefe, 2001). Hippocampal lesions have been shown 
to cause deficits in spatial memory in rodents (Morris et 
al., 1982), and electrical stimulation of the entorhinal cor-
tex, an MTL structure associated with the hippocampus, 
and its main interface with the neocortex, has been linked 
to improved spatial memory in mice, possibly related to 
improved adult neurogenesis in the dentate gyrus (Stone 
et al., 2011).

In humans, many different methods have been employed 
to discover the exact relation of the hippocampus and 
other brain structures with spatial memory and navigation. 
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Spatial navigation, or the ability to remember and navi-
gate environments, is an important skill for humans and 
animals. It has inspired a great deal of research, including 
neuroimaging studies of humans and single-unit record-
ings of animals. Recent advances in computational mod-
eling have enabled spatial navigation in humans and 
animals to be investigated in a more precise and detailed 
manner. More specifically, computational models allow 
us to estimate theoretical parameters associated with 
spatial navigation, and model-based fMRI can be used 
to investigate the neural correlates of these parameters. 

This review addresses the literature on spatial naviga-
tion beginning with reviewing lesion and animal studies 
of spatial cognition. Imaging studies of spatial memory 
and navigation in humans, including structural imaging, 
and more-complex functional imaging studies involving 
virtual reality are then discussed. Particular emphasis is 
placed on computational studies of behavior involving 
reinforcement learning models and model-based fMRI. 
Finally, the advantages of model-based fMRI for inves-
tigating the neural basis of spatial navigation in humans 
are discussed. 
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A voxel-based morphometry study showed structural dif-
ferences between licensed London taxi drivers, who must 
pass a rigorous test of their knowledge of London roads 
(and thus are expected to have better spatial memory), 
and controls (Maguire et al., 2000). It was found that the 
taxi drivers had larger posterior hippocampi and smaller 
anterior hippocampi compared with controls. This change 
in hippocampal size was also found to correlate linearly 
with the number of years of experience the taxi driver had 
(Maguire, Woollett, & Spiers, 2006). In concordance with 
rodent-study results, electrical stimulation of the entorhinal 
cortex in epileptic patients undergoing invasive recordings 
prior to surgery resulted in quicker and more-accurate navi-
gation in a simulated environment (Suthana et al., 2012). 
It is tempting therefore perhaps to link these two studies 
with the rodent study connecting adult neurogenesis with 
improved spatial memory to suggest that increased adult 
neurogenesis in the dentate gyrus results in a greater num-
ber of hippocampal cells, underpinning the remarkable tal-
ents of the London taxi drivers. This possible mechanism for 
acquisition of spatial memories has much support; adult-
generated dentate gyrus cells are preferentially recruited 
into neural networks associated with spatial memories (Kee, 
Teixeira, Wang, & Frankland, 2007), and many models have 
been proposed to link adult neurogenesis with hippocam-
pal learning (e.g., Becker, 2005; Aimone, Wiles, & Gage, 
2006). However appealing this theory may be, there has 
been no conclusive supporting evidence for it.

None of the studies mentioned provides any insight into 
how humans or animals use these structures to know where 
they are and how to navigate to a goal location. Place cells 
are clearly an important element of spatial cognition and 
navigation, but there is a limit to what we can find out using 
experimental animals. Single-unit recordings in freely mov-
ing animals produce sensory-motor confounds; these can 
be controlled better by using human subjects, who are 
also assumed to be better at navigating and making deci-
sions within their environments. However, one issue when 
studying navigation is the scale of the problem; naturally, 
humans navigate in large-scale environments, something 
that is difficult to reproduce in a controlled laboratory set-
ting. Traditional tabletop tests of spatial memory do not 
accurately test natural navigation (Maguire et al., 1996), 
as the subjects are required to solve the problems from 
different viewpoints or in different reference frames from 
the ones they would naturally employ. Natural navigation 
tasks are more realistic, but they present problems when 
the researchers are trying to control between subjects, or 
accurately record performance spatially and temporally. 
One solution is to use virtual reality (VR).

Functional Imaging of Navigation
One of the major advantages of VR is the possibility of 
combining it with other techniques; its nature allows the 
subject to explore a virtual environment on a screen, while 
remaining still enough to allow functional images or sin-
gle-cell recordings to be taken. Some early VR studies of 
spatial memory (e.g., Aguirre, Detre, Alsop, & D’Esposito, 

1996) showed activation in certain brain areas (parahippo-
campus and associated cortex). However, it is difficult to 
break down the activation patterns of these studies to find 
the particular activity underpinning the task. Further stud-
ies have illuminated the function of different areas during 
navigation, using, for example, positron emission tomog-
raphy (PET) while participants navigated a complex but 
previously experienced VR town (Maguire et al., 1998). The 
subjects underwent four different navigation tasks, allow-
ing the authors to find that the participants’ speed mov-
ing through the environment was associated with caudate 
activation, activity in the right hippocampus was associ-
ated with navigation accuracy, and activity in the left hip-
pocampus was associated with navigation success. Bilateral 
medial and right inferior parietal activation corresponded 
with movement through the environment, and prefrontal 
activation was associated with success in navigating around 
blocked routes. However, due to the technique used (PET), 
between-subject effects could not be distinguished. 

Recently, the use of PET has decreased in favor of func-
tional magnetic resonance imaging (fMRI), which has many 
advantages, such as higher temporal resolution and very 
high spatial resolution. Using fMRI, Hartley, Maguire, Spiers, 
and Burgess (2003) expanded on the PET experiments, 
finding that in successful navigators, anterior hippocampal 
activation was correlated with way-finding, and caudate 
activation was correlated with route following (hence the 
correlation with speed found in Maguire et al., 1998). 

As well as finding which brain areas are active during navi-
gation, more-recent experiments have sought to determine 
which aspects of navigating in a virtual environment cor-
respond to the detected activity. Correlations between hip-
pocampal activity and navigation relying on spatial memory 
of the environment, and between parahippocampal activ-
ity and navigation relying on contextual memory (that is, 
the relationships between landmarks—“the post office is 
to the left of the statue”), have been found using variants 
of a learned environment (Rauchs et al., 2008). Functional 
segregation of the MTL at different phases of navigation 
has been investigated by testing subjects in variants of a 
learned VR environment (Xu, Evensmoen, Lehn, Pintzka, & 
Håberg, 2010). The authors found that anterior MTL (ante-
rior hippocampus, entorhinal cortex, and anterior parahip-
pocampal cortex) was active only during the initial phase of 
navigation, involving self-localization and planning routes 
(as reported by the participants), and the posterior MTL 
(posterior hippocampal and posterior parahippocampal 
cortex) was active throughout navigation, presumably cor-
responding to processing spatial information relating to the 
subjects’ current position within the environment. 

Using a similar but much more detailed method than Xu et 
al. (2010), Spiers and Maguire (2006) sought to investigate 
the neural activity corresponding to more-detailed aspects 
of navigation as their subjects (taxi drivers) drove around 
London in response to requests from customers. After the 
subjects finished the task and left the scanner, they were 
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(1948) cognitive map, with location-specific hippocampal 
cells observed, and structural changes in the human hip-
pocampus that correlate with spatial-memory abilities. 
However, because of the very nature of the problem, navi-
gation in humans is hard to test, and this has led to the 
development of VR environments to investigate navigation 
in a controlled manner. VR has been successfully combined 
with functional imaging, and the hippocampus has been 
consistently linked with navigation accuracy, particularly in 
the early stages of navigation, in which recall of memory is 
most vital. Electromagnetic methods (EEG and MEG) have 
also been used, and a link made between the hippocam-
pal theta rhythm and navigation. These results show that 
the hippocampus is almost certainly responsible for spatial 
cognition in animals and humans, but there is still much to 
be discovered. Less is known about how we make deci-
sions during navigation, but this is where computational 
models may help us answer these questions.

COMPUTATIONAL MODELS
Neural systems have also been extensively modeled com-
putationally; these include place cells (Sharp, 1991; Hartley, 
Burgess, Lever, Cacucci, & O’Keefe, 2000) and rat naviga-
tion (Brown & Sharp, 1995; Burgess, Donnett, Jeffery, & 
O’Keefe, 1997). The class of models on which I will focus 
will be those of reinforcement learning (RL) (Sutton & Barto, 
1998), which have been used in model-based fMRI studies. 
RL formalizes the “law of effect” (Thorndike, 1911), which 
states that actions that lead to positive outcomes are more 
likely to be repeated. While RL models vary, they all seek to 
learn the value of a stimulus or action that in some way rep-
resents the reward associated with that stimulus or action. 
Rescorla and Wagner (1972) sought to apply this idea to 
classical conditioning, and devised a formula to calculate 
the associative strength of a conditioned stimulus after a 
reward. Their updated rule was interpreted as a prediction 
error (between the reward expected and that obtained), 
and was advanced by the development of a real-time, 
trial-by-trial temporal difference (TD) error (Sutton & Barto, 
1990). The simplest TD algorithm updates the value Vst of 
a state, s at time, t as  V↓st (V↓st  + a[r↓(t +  1) + γ V↓(st + 
1) - V↓st] (Sutton & Barto, 1998), using the observed reward 
(rt+1), a learning rate between 0 and 1 (α), and a delay dis-
count (γ) between 0 and 1, so that delayed rewards have 
lower importance than immediate ones. The agent then 
uses these calculated values to make a decision when 
required, employing, for example, the softmax activation 
function, which converts the value of a state into a prob-
ability of action using a temperature parameter, determin-
ing the stochastic nature of the choice. This action then 
determines the next state the agent experiences and the 
reward received from the environment, and the value of 
the new state is then updated. These model parameters 
can be determined by various means, which will be dis-
cussed in the context of the application of these models 
to fMRI. 

Neural Basis of Reinforcement Learning
It has been shown that RL algorithms can provide a good 

immediately shown a replay of their navigation, and were 
interviewed to discover what they were thinking at different 
stages of the navigation. The verbal report protocol used 
with the subjects following the scan allowed the authors to 
break down the task into many more subcomponents than 
previous studies had, including visual inspection, action 
planning, and simply coasting. The authors found that, dur-
ing the initial planning of the route, there was activation 
in the whole spatial-navigation network, including the hip-
pocampus, as well as activation in lateral and medial pre-
frontal areas. When subjects altered their route during the 
journey, activation was seen in retrosplenial and right pari-
etal cortices as well as prefrontal areas. The subjects inter-
viewed reported expecting particular routes or landmarks; 
when these expectations were fulfilled, the retrosplenial 
and posterior parietal cortices were active. However, if, for 
example, they encountered a blocked route, the right lat-
eral prefrontal cortex became active, supporting previous 
studies linking this area to detecting violations of expecta-
tions (e.g., Corlett et al., 2004).

 These studies provide an insight into how the brain keeps 
track of our position as we move through space, but we do 
not know as much about how we navigate toward a goal 
location. Studies such as Spiers and Maguire (2007) pro-
vide evidence for internal metrics of goal location and dis-
tance, supporting models (e.g., Burgess, Jackson, Hartley, 
& O’Keefe, 2000) of how organisms navigate to a goal. This 
does not, however, provide any evidence for how the brain 
makes decisions during navigation, particularly at vital 
points such as when the route is blocked. Computational 
models have been developed to explain how organisms 
make decisions, and by combining these with functional 
imaging techniques, it is possible to discover how decision 
processes are carried out in different regions of the brain 
during navigation. These models, and their implementa-
tion along with functional imaging, will be discussed at 
greater length below.

As sophisticated as fMRI techniques have become, they are 
particularly limited by their temporal resolution. As such, 
more-direct measures of neural activity, such as electro-
encephalography (EEG) and magnetoencephalography 
(MEG), have been used to study the association between 
navigation and high-frequency brain activity, such as the 
theta rhythm. The theta rhythm has been linked to spa-
tial behavior in rodents, and there is evidence from EEG 
(Kahana, Sekuler, Caplan, Kirschen, & Madsen, 1999) and 
MEG (de Araújo, Baffa, & Wakai, 2002) that these theta 
oscillations are linked to navigation in humans as well as 
lower mammals. More recently, MEG has been used to 
determine the function of these theta oscillations in human 
navigation. Cornwell, Johnson, Holroyd, Carver, and Grillon 
(2008) used a virtual Morris water maze and found that 
anterior hippocampal theta was implicated in the encod-
ing of the spatial environment, and posterior hippocampal 
theta was highly correlated with navigation performance.

There is now good evidence for the neural basis of Tolman’s 
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estimation of neural activity in both animals and humans. 
Theories have been proposed that credit the action of 
the dopaminergic system and its inputs to the striatum 
with implementing the RL prediction error (Schultz et al., 
1995); these theories are supported by single-unit record-
ings in monkeys (Schultz, Dayan, & Montague, 1997). 
Similar results were found in an fMRI experiment involv-
ing humans and a simple operant conditioning paradigm 
(Pagnoni, Zink, Montague, & Berns, 2002). The authors 
found a pattern of activity in the ventral striatum (inner-
vated by the dopaminergic system) that showed differen-
tiation between trials with an expected positive stimulus, 
and those when the stimulus was withheld. Patients with 
Parkinson’s disease (in which striatal dopamine levels drop) 
have also shown difficulties when learning from feedback 
(Knowlton, Mangels, & Squire, 1996; Shohamy et al., 
2004). These studies, however, do not fully explain what 
the dopamine signal represents, as it has been shown that 
it may represent motivation, an incentive salience, rather 
than an RL prediction error (Flagel et al., 2011). Despite 
this uncertainty, RL algorithms have been widely applied, 
including in the fields of spatial cognition and navigation 
(Foster, Morris, & Dayan, 2000; Sheynikhovich & Arleo, 
2010; Gustafson & Daw, 2011).

MODEL-BASED fMRI
Model-based fMRI is a recently developed technique with 
the potential to uncover much more detail about how the 
brain carries out complex processes. All imaging-analysis 
methods could be considered model-based methods, in 
that they rely on assumptions or models of how the brain 
functions. Model-based fMRI, however, is a specific tech-
nique that involves using computational models to analyze 
how fMRI signal changes correlate with quantitative com-
putational predictions of neural activity, rather than simply 
stimulus inputs and behavioral responses. This technique 
allows hidden variables and computational processes to 
be uncovered in ways not possible with traditional event-
related or parametric paradigm designs. In most of the 
studies mentioned above, the activity reported is averaged 
across many trials, but by using computational models, 
fMRI can show not just which brain area’s activity is cor-
related with a task but also how that brain area may carry 
out the task, on a trial-by-trial basis. The internal variables, 
such as prediction errors and state-values of RL models, 
calculated at each time step can be used to test different 
hypotheses about the possible ways the brain implements 
learning from reward and punishment. 

Choice of Parameters
One of the main problems in the development of the RL 
model is that of choosing appropriate model parameters. 
Each of the parameters, such as the learning rate and 
the softmax temperature, must be chosen separately. An 
attractive but potentially problematic method is simply to 
choose parameters based on the experimental literature. 
However, free parameters can vary greatly among differ-
ent subjects and different experimental paradigms (Kim, 
Shimojo, & O’Doherty, 2006; Wittmann, Daw, Seymour, & 

Dolan, 2008; Daw, Gershman, Seymour, Dayan, & Dolan, 
2011; Li & Daw, 2011). A popular method for estimating the 
free parameters is that of maximum likelihood. Optimization 
algorithms are available that iteratively adjust parameters 
to minimize the difference between the choices predicted 
by the model and those actually made by the subjects dur-
ing the task to find the most likely parameter combinations. 
These algorithms are conceptually simple but are of limited 
use in complicated parameter spaces. Other methods (e.g., 
Bayesian) are conceptually more difficult and more compu-
tationally intensive, but may offer a better estimate of the 
parameters, and hence a better model. Once chosen, the 
parameters can then be used with the RL model to gener-
ate the internal variables at particular time points of the 
experimental task. The time series’ variables are then con-
volved with the canonical hemodynamic function to allow 
for the delay between neural activity and the hemodynamic 
response of the neural tissue.

Hypothesis Testing-Model Comparison
As is standard in fMRI experiments, the model-predicted 
time series is used as a regressor against the fMRI data in a 
general linear model (GLM) (Friston et al., 1995). The GLM 
allows areas of the brain to be found where the changes 
in the BOLD signal have a statistically significant correla-
tion with the model-based time series. In decision-making 
experiments, and fMRI experiments in general, simply find-
ing correlated activity in a brain area doesn’t show how the 
associated computations of the chosen model are carried 
out in that area. Another approach is that of model com-
parison, to test hypotheses of how the brain areas carry out 
the necessary computations for the task. Different candi-
date models or hypotheses may be compared to determine 
which model best explains the data. Often the models com-
pared will be simple variations; in the case of RL, this could 
be between an on-policy TD algorithm such as SARSA 
(Rummery & Niranjan, 1994) or an off-policy algorithm such 
as Q-Learning (Watkins, 1989). Another possibility is to 
compare how computations are implemented more funda-
mentally, such as comparing model-based and model-free 
TD learning (Daw, Niv, & Dayan, 2005; Simon & Daw, 2011). 

Simply comparing how well the different models fit the 
behavioral data at the maximum likelihood parameter 
estimates could constitute model comparison. However, 
this does not provide a useful answer because generally, 
model fit is dependent on the number of free parameters; 
the more free parameters there are, the better the fit. A 
more complex model is not necessarily better; it may just 
fit better to noise in the original data, and provide a worse 
fit to a second data set. Because of this, there are various 
model-comparison techniques available, such as the like-
lihood ratio test (Mood, Graybill, & Boes, 1974) or cross-
validation (Bishop, 2006), which involves fitting the models 
to a subset of the data, then testing the models on the full 
data set. However, this method is rarely used in RL because 
it is difficult to split time-series data into two independent 
subsets (Daw, 2011). Another way of approaching model 
comparison is to use Bayesian methods, such as calculating 
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the ratio of the model evidences, known as the Bayes factor 
(Kass & Rafferty, 1995). 

There are many methods available to compare models, but 
one can never be sure that the chosen model is the best 
available, or that a superior model will not be formulated 
at a later date. For this reason, a hypothesis test must be 
carried out to calculate the evidence in support of the null 
hypothesis, and whether or not it can be rejected in favor 
of the alternative hypothesis (the particular model to be 
tested).

MODEL-BASED fMRI STUDIES OF LEARNING AND 
DECISION MAKING
Previous fMRI studies (e.g., Pagnoni et al., 2002) found 
BOLD responses consistent with the prediction error (PE) in 
temporal-difference RL when an outcome was unexpected, 
but did not seek to discover whether neural activity cor-
responded with the predictions made by the TD algorithm 
throughout different stages of learning. O’Doherty, Dayan, 
Friston, Critchley, and Dolan (2003) used fMRI while partici-
pants took part in a Pavlovian conditioning task, and sought 
the neural correlates of the TD prediction error at different 
time points of the conditioning before, during, and after 
learning. The authors found activity in the ventral striatum 
and orbitofrontal cortex (OFC), which correlated signifi-
cantly with the model-derived PE signal. 

In addition to the prediction error between the reward 
expected and that received, it has been hypothesized that 
the brain might keep track of estimated rewards if previ-
ous decisions had been made differently. This would allow 
a distinct fictive error signal, which would further aid the 
organism in making future decisions. A neural correlate 
of this signal in the ventral caudate was found that served 
to modulate the behavior of subjects while they took part 
in an investment game (Lohrenz, McCabe, Camerer, & 
Montague, 2007). 

A potential problem with RL is that when someone is sim-
ply learning values associated with states or actions, the 
higher-order structure of many tasks or environments can-
not be used to make decisions. This was investigated by 
comparing a simple RL algorithm with a more complex 
computational model that incorporates the higher structure 
of a task carried out by participants: probabilistic reversal 
learning (Hampton, Bossaerts, & O’Doherty, 2006). Activity 
in the ventromedial prefrontal cortex (vmPFC, a region pre-
viously associated with decision making) correlated with the 
probability of the correct action being chosen, derived from 
the more complex model incorporating the structure of the 
task. This result is consistent with fMRI studies showing that 
model-generated expected-value signals associated with a 
stimulus are correlated with the BOLD response in various 
frontal cortical regions, including the vmPFC (e.g., Kim et 
al., 2006).

There is some uncertainty about whether the dopamine 
signal in the brain represents a prediction error, but there 

appears to be a good concordance between RL models 
and neural activity in experimental animals and human 
subjects. These models have more recently been used to 
analyze fMRI data in a more detailed manner, to investigate 
where in the brain particular elements of a calculation are 
represented. This technique has provided insights into the 
neural basis of learning and decision making, such as the 
finding that activity in the ventral striatum and OFC corre-
late with the RL prediction error. However, until recently this 
has been restricted to decision making in non spatial tasks.

APPLICATION OF MODEL-BASED FMRI TO SPATIAL 
NAVIGATION
Since the time of the early cognitive map work, a distinc-
tion has been made between different types of spatial 
behavior. Blodgett and McCutchan (1947) discussed the 
difference between “place” and “response” learning. The 
former could be explained by the spatial memory encoded 
by place cells, and the latter could represent a simpler form 
of navigation, one that relied on making decisions at cer-
tain points without necessarily keeping the goal location 
in mind. This could well be explained by the theory of RL, 
and is the basis for applying model-based fMRI (using RL 
algorithms) to spatial navigation. Model-based fMRI has 
previously been applied to studies of learning and decision 
making; however, one study (Simon & Daw, 2011) was the 
first to combine model-based fMRI and VR to understand 
spatial navigation. Different models of how the subjects 
could navigate around the environment were compared—
particularly whether the subjects’ behavior could best be 
explained by a model-based RL algorithm in which the sub-
jects used their knowledge of the structure of the environ-
ment, or by a simpler TD algorithm. In their experiment, 
subjects navigated in a simple 4x4 grid, with the aim of 
navigating toward goal locations corresponding to a mon-
etary reward. Various models were tested, and it was found 
that the model-based RL algorithms fit the behavioral data 
much better than TD, indicating that subjects plan ahead, 
using a spatial map of the environment. A concurrent fMRI 
scan found BOLD signals within the striatum that corre-
lated with both choice and value-related variables from 
the model-based RL algorithm. This is in contrast to the 
traditional view of the striatum being responsible for habit 
learning and route following. Other model-based param-
eters (correlated with value) were found to be correlated 
with activity in the medial temporal lobe and frontal cortex, 
concordant with previous theories about the neural basis 
of forward planning and internal representations of space. 

This study is interesting as the first application of model-
based fMRI to spatial navigation, and it begins to answer 
some important questions in the field. The results hint at 
whether people use an internal map of their environment, 
planning potential routes, or whether they simply follow the 
same paths to goals. This method could also be used to try 
to distinguish how the brain encodes the distance to the 
goal. Although it is known that the hippocampus is neces-
sary for encoding spatial relationships, it is not known for 
certain whether its activity represents distance to the goal 
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in a Euclidian way (as the crow flies) or whether it repre-
sents the path distance, taking into account shortcuts or 
the distance around obstacles. Recent evidence, however, 
has shown that anterior hippocampal activity correlates 
with the Euclidian distance to the goal, and posterior hip-
pocampal activity is linked to the path distance; which is 
active depends on the stage of navigation (en route, at 
decision points, etc.) (Howard et al., 2011). That the brain 
represents both Euclidian and path distance is unsurprising, 
as both are likely to be needed for accurate navigation in 
large-scale, complex environments. The value of the goal 
and the cost of travel are also likely to be as important as, if 
not more important than, the distance to be traveled when 
calculating paths and making decisions; model-based fMRI 
may provide explanations of how these variables interact 
in the brain.

The Simon and Daw study (2011) is a promising starting 
point for the method, although future studies need to be 
carried out to answer many of the unresolved questions 
within spatial navigation. The study used a highly artificial 
environment that, although it allows for a simple analysis, 
does not allow natural navigation to be investigated. To 
further elucidate the neural basis of decision making dur-
ing navigation, a more complex, more natural environ-
ment could be used, whether with a VR environment (e.g., 
Hartley et al., 2003) or video recordings of natural scenes 
(e.g., Howard et al., 2011). Although the environment was 
designed to encourage a model-based strategy by incor-
porating dynamic rearrangement of the doors between the 
rooms, the subjects were always able to see the goal loca-
tion above the other rooms. This makes it possible that in 
some of the trials, the subjects were simply trying to move 
closer to the goal and not thinking about the structure of 
the environment. If, in another experiment, the subjects 
were taught the environment and the goal locations prior 
to scanning, but then could not see them directly, they 
might be more likely to plan routes ahead and navigate in 
a more realistic manner. 

LIMITATIONS OF MODEL-BASED fMRI
Although model-based fMRI is potentially a powerful tech-
nique, and has great promise in the field of spatial navi-
gation, it is not without its limitations. Model-based fMRI 
is intrinsicly limited by the imaging technique itself. Unlike 
single-unit recordings in animals, fMRI is an indirect mea-
sure of neural activity, and has low spatial and temporal 
resolution. As such, it can provide only an estimate of the 
average firing of neurons in a brain region, not the pat-
terns of activity of individual neurons. To determine more 
precisely how (if at all) these algorithms are implemented in 
the brain, other techniques such as single-unit recordings 
or more-direct measures of neural activity in humans may 
be required, such as EEG or MEG, which could be used 
to uncover more accurately the time course of the activ-
ity. Another fundamental limitation of fMRI is that only a 
correlative, not a causal, link can be established between 
the neural activity and the subjects’ behavior. To deter-
mine whether the region is necessary for a particular task, it 

must be disrupted, either by a preexisting lesion or by the 
use of transcranial magnetic stimulation (Barker, Jalinous, 
& Freeston, 1985). As both navigation and decision mak-
ing are complex processes, it is unlikely that the processes 
necessary for these tasks are carried out in individual brain 
areas. It is more likely that the computation is carried out 
as a dynamic pattern of activity and flow of information 
through many different brain areas. This is difficult to detect 
using simple model-based fMRI, although work has been 
undertaken to uncover interactions between different brain 
areas using techniques such as dynamic causal modeling 
(Friston, Harrison, & Penny, 2003). Model-based fMRI also 
has its own disadvantages compared to traditional fMRI, 
as it involves finding brain areas where the activity corre-
lates with variables predicted by a particular model. This 
approach can prevent the discovery of results not expected 
a priori, and for this reason it is probably wise to carry out 
a conventional trial-based analysis of the fMRI data in con-
junction with the model-based approach.

Rather than just using model-based fMRI or comparing 
results with other techniques, a similar model-based analy-
sis could be applied to any physiological measure that 
correlates with behavior. RL models could be adapted to 
carry out model-based analyses of imaging data from other, 
complementary techniques such as EEG/MEG or measures 
such as eye tracking. These methods could be formally 
combined—for example, simultaneous EEG-fMRI record-
ing (see Laufs, Daunizeau, Carmichael, & Kleinschmidt 
[2008] for a review)—to potentially provide an insight into 
the computational processes carried out by the brain dur-
ing navigation at a high spatial and temporal resolution. 

The most important limitation of any model-based analysis 
is the assumptions it requires. Model-based fMRI requires 
many steps, from constructing the models and designing 
the experiment to collecting and analyzing the data. In all 
this it is easy to forget that the whole technique relies on 
an assumption that the brain reduces a very complicated 
problem to a few simple steps with particular variables. It is 
important to remember that this may be a flawed construct, 
and just because the analysis gives an appealing answer, 
that does not mean it is necessarily true. Any evidence this 
method provides must be interpreted in the light of the 
rest of the experimental literature, and supported by results 
obtained by other methods.

The application of model-based fMRI to spatial navigation 
research is promising, although only one study has yet been 
performed (which was designed to study decision making 
in a navigation paradigm, rather than navigation itself). This 
method has the potential, however, to reveal how humans 
use internal models of their environment, how they assign 
value to parts of their environment, and how they use this 
information to make decisions and navigate accurately. But 
to accomplish this, care must be taken to design tasks that 
will allow these variables to be investigated, while ensur-
ing that the navigation paradigm corresponds well to real-
world tasks. Model-based fMRI has many limitations, most 
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of which are simply the limitations of the imaging modality 
itself; they can be overcome, at least in part, by combining 
or comparing results from model-based fMRI with results 
from other methods. However, model-based fMRI rests 
entirely on the validity of the models chosen for the analy-
sis, and this must be kept in mind when one is interpreting 
results.

CONCLUSION
Much has been learned about spatial memory, from single-
unit recordings in animals to sophisticated imaging studies 
in humans. RL algorithms have helped our understanding of 
how we and other animals learn about our environment and 
make decisions. The application of these models in model-
based fMRI results in a particularly powerful technique, 
allowing researchers to detect where in the brain specific 
elements of particular computations are carried out. The 
study by Simon and Daw (2011) is a promising starting point 
for the application of the method to spatial navigation; how-
ever, as the authors acknowledge, their study was more like 
others designed to investigate decision making rather than 
spatial navigation. To investigate the unanswered questions 
in navigation, such as how we make decisions and use mod-
els of our environment, the method needs to be improved, 
advanced, and perhaps supplemented with model-based 
analyses of other techniques, such as EEG/MEG. 

Because model-based fMRI relies on the validity of apply-
ing RL models to spatial navigation, this must also be inves-
tigated. Experiments in animals may provide a method 
for doing just this. Selective inactivation, both in time and 
space, of areas thought to be involved in RL-related pro-
cesses as an animal learns and navigates within an environ-
ment could be used to investigate the validity of applying 
models originally developed to explain learning in condi-
tioning paradigms to spatial navigation by humans in com-
plex environments.
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