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Abstract

Pseudouridylation, the isomerization of uridine to pseudouridine, is the most frequent post‑
transcriptional modification of RNA, such that pseudouridine has even been termed the 
fifth nucleotide. Whereas eubacteria employ single protein enzymes to identify and modify 

target uridines, archaebacteria and eukaryotes additionally evolved more complex modification 
machines, H/ACA ribonucleoproteins (RNPs). Each H/ACA RNP consists of a short RNA and 
the same four core proteins, one of which is the pseudouridine synthase related to the bacterial 
single protein enzymes. In this chapter, we will give an overview of these multicomponent machines 
with emphasis on the eukaryal systems that have acquired additional functions and that are the 
subject of the inherited bone marrow failure syndrome dyskeratosis congenita.

Introduction
Nuclei of metazoans harbor several hundred individual small nucleolar ribonucleoproteins 

(snoRNPs) that predominantly function in RNA modification. They are divided into two major 
classes according to their function‑defining snoRNAs, box H/ACA and box C/D snoRNPs, 
which pseudouridylate and 2′‑O‑methylate their target RNAs, respectively. SnoRNAs guide the 
modification by site‑specific base pairing while an enzyme (which is one of four core proteins of 
each RNP) catalyzes the reaction. Collectively, the snoRNAs account for one of the largest families 
of noncoding RNAs. In this overview, we will focus on the H/ACA class of RNPs (see chapter 
by Gagnon et al for C/D RNPs).

H/ACA RNAs
H/ACA RNAs are generally 60‑150 ribonucleotides in length, noncoding, trans‑acting mol‑

ecules, for reviews see.1,2‑9 Defining features of H/ACA RNAs are two hairpins separated by a 
short single stranded sequence (hinge), which includes an ANANNA consensus hexanucleotide, 
and an ACA triplet exactly three nucleotides from their 3′‑end (Fig. 1A).10,11 Although the num‑
ber of hairpins can vary, H/ACA RNAs are conserved from archaea to mammals. The hairpins 
contain internal bulges and can differ in size and organization of stems and loops (Fig. 1A). The 
vast majority of H/ACA RNAs contain in their bulges two 3‑10 ribonucleotide long stretches (3′ 
and 5′ of the upper stem) that are complementary to the sequences flanking their target uridines 
(Fig. 1A, arrows).12,13 Hence, these internal loops are also known as pseudouridylation pockets. So 
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far, targets of these so‑called guide RNAs are ribosomal RNAs (rRNAs) and spliceosomal small 
nuclear RNAs (snRNAs).12‑15 Although originally and together with C/D RNAs identified in 
nucleoli as snoRNAs, H/ACA RNAs are now subdivided into guide and nonguide RNAs (that 
function in pseudouridylation or not). The former are further categorized into snoRNAs (located 
in nucleoli and functioning in the pseudouridylation of rRNA) and small Cajal body RNAs 
(scaRNAs, located in Cajal bodies and functioning in the pseudouridylation of snRNAs). Cajal 
bodies are approximately one micron sized structures numbering one to five in most nuclei and 
serving as locale of snRNA modification.16‑18 ScaRNAs contain a Cajal body‑localizing element, 
the CAB box (5′‑ugAG‑3′), in the terminal loop of one or both hairpins (see chapter by Yu et 
al).19 Two types of scaRNAs are unique, one, in combining features of H/ACA and C/D RNAs 
yielding hybrids and, two, in forming a twin H/ACA RNA with four hairpins.7,15,16,20 In mammals, 
H/ACA RNAs target the modification of ∼100 uridines in rRNAs and 27 in snRNAs. However, 
it should be noted that not all pseudouridines are specified by H/ACA RNAs. For example, the 
pseudouridines of eukaryotic tRNAs and yeast 5S rRNA21 are generated by protein‑only enzymes 
that recognize the uridine and catalyze its modification and yeast U2 snRNA is the target of both 
H/ACA RNPs and stand‑alone pseudouridylases (see chapter by Karijolich et al).

H/ACA Core Proteins
All H/ACA RNAs associate with four conserved core proteins that are responsible for the 

metabolic stability of the RNAs and catalyze the isomerization of uridine to pseudouridine. These 
proteins are the mammalian pseudouridine synthase NAP57 (aka dyskerin or in yeast Cbf5p and 
in archaea Cbf5), NOP10, NHP2 (L7Ae in archaea) and GAR1 (Fig. 1B).

NAP57 was identified in the immunoprecipitate of the highly phosphorylated nucleolar 
protein Nopp140 and termed Nopp140 associated protein with a relative molecular mass of 57 
kD.22 NAP57 localizes to nucleoli and Cajal bodies and is 70% identical to yeast Cbf5p, which 
was previously identified as a low‑affinity centromeric DNA binding protein.23 The central part 

Figure 1. A) Schematic of an H/ACA RNA (black) with two hairpins separated by the hinge 
region containing the conserved ANANNA sequence and ending in ACA exactly three 
nucleotides the 3′ end. A substrate RNA (gray) is modeled into the bulge (pseudouridylation 
pocket) of the 3′ hairpin placing the target uridine (bold) and an unpaired nucleotide at the 
bottom of the upper stem while base pairing with the guide RNA on either side (arrows). B) 
Schematic of the four core proteins and their arrangement in the complex. The positions of the 
central catalytic domain of NAP57 (upper half) and of its PUA domain, with the C‑terminus 
and N‑terminus wrapped around (N‑//PUA‑C, lower half), are indicated. C) 3D structure of 
a fragment of human U65 H/ACA RNA (black) base pairing with a piece of 28S ribosomal 
RNA (gray).81 The flipped‑out target uridine (U) is indicated (arrowhead) and the marked he‑
lices (arrows) correspond to those in (A). The structure is based on coordinates deposited in 
the Protein Data Bank (ID code 2P89)81 and was rendered using MacPyMol software (http://
www.pymol.org).
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of NAP57 (later identified as the catalytic domain) showed 34% identity to a bacterial protein 
that was subsequently purified based on its pseudouridylase activity.24

Analysis of the primary amino acid sequence of NAP57 reveals several distinct domains. One 
lysine‑rich motif at the amino and three at the carboxyl terminus are separated by the catalytic and 
the pseudouridine and archaeosine transglycosylase (PUA) domains (see chapter by Mueller and 
Ferre‑D’Amare). The catalytic domain contains a conserved aspartate that is important for catalysis 
(see chapter by Mueller and Ferre‑D’Amare).25‑28 The PUA domain is an RNA binding motif29‑32 and 
the lysine‑rich stretches can function as nuclear localization signals.33,34

NOP10 is the smallest polypeptide of the RNP with only 64 amino acids in mammals and a 
molecular mass of 7.7 kD.35 In the complex, it lines the catalytic domain of NAP57 stabilizing it 
and providing a docking site for NHP2.36,37

NHP2 was discovered as a nonhistone protein with molecular mass of 17 kDa.38 It is homolo‑
gous to the ribosomal protein L30 and to 15.5K/NHP2L1/NHPX (Snu13p in yeast), which is 
part of C/D RNPs and the snRNP U4.39‑42 The archaeal ortholog L7Ae is part of both archaeal 
H/ACA and C/D RNPs.43 L7Ae (and 15.5K) binds specifically to a kink‑turn motif in RNA, 
whereas NHP2 binds RNA secondary structures in an unspecific manner (see chapter by Gagnon 
et al for more details).35,37,44,45

GAR1 is a protein with a molecular mass of 22 kDa and consists of a central domain flanked 
by glycine‑arginine rich (GAR) domains.46 GAR1 is an integral part of the active RNP complex 
and binds directly to NAP57.37,47‑50

According to the crystal structure of an archaeal H/ACA RNP and to cryoelectron microscopic 
studies of purified H/ACA particles, each of the normally two hairpins of H/ACA RNAs associates 
with its own set of four core proteins placing the catalytic core at the pseudouridylation pocket.40,48,51 
Therefore H/ACA RNPs consist of one RNA and two each of the four core proteins.

Beyond Formation of Pseudouridines
Although most H/ACA RNAs guide the modification of RNA, their most prominent members 

do not. They are the only essential H/ACA RNA, U17/E1 (snR30 in yeast), required for ribosomal 
RNA processing and the mammalian telomerase RNA, required for telomere maintenance.52,53 
Of additional interest are tissue‑specific and orphan H/ACA RNAs (without complementarity 
to any stable RNAs).

Ribosomal RNA Processing
The H/ACA RNA U17/E1 is required for a processing event in the formation of 18S rRNA.54 

Thus, U17/E1 is essential for ribosome biogenesis and cell viability. Specifically, short stretches of 
highly conserved nucleotides in the bulge of the 3′ hairpin are engaged in the early cleavage steps 
of 35S pre‑rRNA in yeast.55 The importance of these sequences is illustrated by their high degree of 
evolutionary conservation in budding and fission yeasts and in all vertebrates.53,56 In addition to the 
H/ACA core proteins, U17/E1 associates with the DEAD box helicase Has1p, which is required 
for snoRNP release from pre‑rRNA.57 Additional interacting but as of yet uncharacterized proteins 
have been identified.51,58 These may be testimony of the specialized function of U17/E1.

Telomerase
Maintenance of chromosome ends (telomeres), which plays a crucial role in cellular senes‑

cence and cancer, is mediated by telomerase, an H/ACA RNP.52 Specifically, human telomerase 
consists of a 451 nucleotide long RNA (hTR) whose 3′ end is an H/ACA domain.59 Like all H/
ACA RNAs, hTR associates with all four core proteins that are important for its accumulation 
and stability.59,60 Activity of telomerase is dependent on the template region in the 5′ half of hTR 
and on the reverse transcriptase TERT. Although hTR (and its H/ACA core proteins) is (are) 
expressed in all cells, TERT (and telomerase activity) is (are) mostly restricted to stem and cancer 
cells. Not only is hTR an H/ACA RNA but it is also a scaRNA with a CAB box that localizes 
telomerase to Cajal bodies in a cell cycle and TERT dependent manner.61‑65
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Additional Functions
New H/ACA RNAs are still being identified using a combination of biochemical and in silico 

approaches.14,66‑70 These approaches unearthed novel H/ACA RNAs that lack complementarity 
to any of the stable RNAs. These so‑called orphan H/ACA RNAs appear either to guide the 
pseudouridylation of yet to be identified RNAs (e.g., mRNAs) or to exhibit separate functions 
(like U17/E1 and hTR).

One of these orphan H/ACA RNAs, HBI‑36, is of particular interest because, unlike all other 
H/ACA RNAs, it is expressed in a tissue specific manner.71 Specifically, HBI‑36 is expressed from 
an intron of the serotonin C2 receptor gene only in the choroid plexus of the brain suggesting a 
developmentally regulated function.

In another case, scaRNA U100 possesses complementarity to a target RNA, however, the 
uridine that it specifies in U6 snRNA is apparently not modified.72 Therefore, even apparent guide 
RNAs may serve different purposes.

Architecture of H/ACA RNPS
Overview

Recent years have produced a detailed view of H/ACA RNPs. Biochemical analyses revealed 
intra RNP protein‑protein and ‑RNA interactions of eukaryal particles and X‑ray crystallographic 
studies provided the details of partially and fully reconstituted archaeal RNPs.37,47,48,73‑77 The major 
difference between archaeal and eukaryal H/ACA RNPs is between the homologous proteins 
L7Ae and NHP2, respectively. Whereas L7Ae recognizes and binds archaeal H/ACA RNAs 
independently, NHP2 does so only when complexed with NAP57 via NOP10.37,43‑45

H/ACA RNPs appear unique among RNA‑protein complexes. In place of the usual inter‑
twined structures of proteins and RNA, e.g., in the cases of the U1 snRNP78 and C/D RNPs 
(see chapter by Gagnon et al), the four H/ACA core proteins form a planar, coherent surface 
accommodating individual H/ACA RNAs and their targets like a slice of bread being buttered. 
This arrangement may allow the accommodation of the 150 or so different H/ACA RNAs by 
the same protein complex.79,80

Intra‑RNP Interactions
In eukaryotes the four core proteins can form an independent complex (archaeal L7Ae is held 

in place by the RNA) that resembles an equilateral triangle (Fig. 1B).47,48,75‑77 Its corners are formed 
by GAR1, NHP2 and the C‑terminal PUA domain of NAP57 (which also associates with the 
N‑terminus). The body consists of the catalytic domain of NAP57, which is lined by NOP10 (that 
in turn binds NHP2) and which binds GAR1. One hairpin of an H/ACA RNA stretches across 
the NAP57‑NOP10‑NHP2 axis. The PUA domain of NAP57 anchors the ACA triplet on one 
end and NHP2 the terminal loop of a hairpin on the other thereby placing the pseudouridylation 
pocket over the catalytic domain of NAP57. The confinement of the ACA triplet to the PUA 
domain of NAP57 explains the constraint of 14 nucleotides between the ACA and the top of the 
pseudouridylation pocket (where the target uridine will be situated) for placement of the latter 
near the active site of NAP57.12,13,48 GAR1 is not required for RNA binding and the three proteins 
NAP57, NOP10 and NHP2 form an independent complex (the core trimer) that provides the 
specificity for H/ACA RNA recognition. Despite this separation of GAR1 from the core trimer, 
UV‑crosslinking experiments suggest that all eukaryal core proteins contact the H/ACA RNA in 
some fashion, whereas only NAP57 and GAR1 crosslink to the target uridine.37,73

RNP‑Substrate Interactions
How an H/ACA guide RNA accommodates its target RNA has been visualized in solution 

and in the context of three core proteins.75,81,82 The pseudouridylation pocket of the guide RNA 
(Fig. 1C, in black) forms a more or less straight opening that base pairs on one side with the 5′ 
half of the target RNA (gray) (extending the bottom helix of the hairpin) and on the other with 
the 3′ half (extending the top helix of the hairpin) (arrows). This unique conformation forces the 
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substrate RNA into a tight turn at the two unpaired nucleotides flipping out the target uridine (Fig. 
1C, gray U and arrowhead), which becomes accessible to the active site of NAP57. Additionally, 
this arrangement of the H/ACA guide‑target RNA complex obviates the necessity of a helicase 
for loading and release of target RNAs.81,82

RNP Stability
Each of the proteins of the core trimer, but not GAR1, is essential for cell viability and for 

metabolic stability of all H/ACA RNAs and of each other.35,40,60,83,84 Consistent with these ob‑
servations in yeast, mammalian RNP complexes of the core trimer and an H/ACA RNA, once 
assembled do not exchange their RNA.37 In particular, NAP57 remains stably associated with its 
H/ACA RNA in cell extracts, whereas NOP10 and NHP2 exchange to some extent and GAR1 
more readily.85 In conclusion, H/ACA RNPs are stable complexes and formation of new particles 
requires de novo synthesis and assembly of its individual components.

Biogenesis of H/ACA RNPs
Despite the simple five‑component composition of H/ACA RNPs, eukaryal particles rely 

on accessory factors for their assembly. In particular, two factors, Naf1p and Shq1p have been 
identified in yeast to be essential for the stable accumulation of H/ACA RNPs.86‑88 Both proteins 
have homologs in mammals, NAF1 and SHQ1. NAF1 is recruited cotranscriptionally to the site 
of H/ACA RNA transcription and is also required for the assembly of human H/ACA RNPs 
including telomerase.89‑92 NAF1 binds NAP57 at the same site as GAR1 indicating a sequential 
assembly.37,87,93 Although less is known about Shq1p, it also binds Cbf5p (the yeast NAP57) without 
being part of mature H/ACA RNPs.88 Consistent with these findings, both proteins are excluded 
from nucleoli and Cajal bodies, the sites of mature particles and localize to the nucleoplasm. In 
contrast to eukaryotes, archaea lack recognizable homologs of these assembly factors and their H/
ACA RNPs can be functionally reconstituted with just the five core components alone.49,50

Two additional proteins, Nopp140 and SMN, have been implicated in H/ACA RNP bio‑
genesis and/or function due to their ability to interact with them. In fact, NAP57 was identified 
in immunoprecipitates of the highly phosphorylated nucleolar protein Nopp140,94 whereas 
the survival of motor neuron protein (SMN) that is affected in spinal muscular atrophy binds 
GAR1.95‑97 Although SMN is clearly involved in the assembly of spliceosomal snRNPs, evidence 
for a similar function in H/ACA RNP biogenesis is lacking. Therefore, NAF1 and SHQ1 are to 
date the only bona fide H/ACA RNP assembly factors.

Finally, factors that may be involved in the biogenesis of both H/ACA and C/D RNPs have 
been identified. These include AAA+ helicases and chaperone proteins, e.g., the helicases Rvb1 
(Tih1, TIP48, pontin, etc.) and Rvb2 (Tih2, TIP49, reptin, etc.) and the heat shock protein 
HSP90.98‑102 These factors may be more generally required for RNP biogenesis and, like that of 
the other assembly factors, their precise mechanism of action remains to be determined.

Dyskeratosis Congenita
Overview

H/ACA RNPs have gained significant attention due to their association with the bone mar‑
row failure syndrome dyskeratosis congenita (DC). DC is a rare but often fatal inherited disease 
leading to stem cell loss particularly in rapidly proliferating tissues such as the bone marrow, skin 
and intestine.103,104 It is mainly characterized by bone marrow failure and the mucocutaneous 
triad of abnormal skin pigmentation, nail dystrophy and mucosal leukoplakia, but also causes 
a predisposition to malignant tumor formation.105 DC is inherited in three patterns, X‑linked 
recessive (accounting for ∼45% of cases), autosomal recessive (∼50%) and autosomal dominant 
(∼5%). The X‑linked and autosomal recessive forms usually are most severe with extreme cases 
of intrauterine growth retardation, whereas the autosomal dominant form is milder and can 
go unnoticed until the fourth or fifth decade of life. The X‑linked form is caused exclusively by 
mutations in NAP57, which is hence also referred to as dyskerin.106,107 The autosomal recessive 
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form is genetically heterogeneous. Although families with mutations in NOP10, NHP2 and the 
telomeric factor TIN2 have been identified, the affected gene(s) of most families remain to be 
discovered.108‑111 The autosomal dominant form is due to mutations in the telomerase RNA and 
reverse transcriptase genes.112,113

Pathogenesis
Although DC patients of all inheritance patterns exhibit shortened telomeres in peripheral 

blood, the degree to which the other functions of H/ACA RNPs are contributing to the patho‑
genesis and if and how certain classes of H/ACA RNPs are preferentially impaired in the recessive 
forms remains to be established. The autosomal dominant form is due to haploinsufficiency of 
telomerase and shows disease anticipation, i.e., shorter telomeres and earlier onset in subsequent 
generations.112,114 The recessive forms are more complex and mouse models point to a mixture 
of affected H/ACA RNP functions with telomerase featured prominently.107,115‑118 The level of 
understanding or lack thereof is perhaps best illustrated by the absence of an explanation for the 
molecular impact of the many mutations in NAP57 in X‑linked DC.

NAP57 Mutations
The forty or so DC mutations identified in NAP57 cluster to its PUA domain including the 

C‑terminus and to its N‑terminus mostly avoiding the catalytic domain.119 In a model of the 3D 
structure (based on those from archaea) most of these mutations come together on one solvent 
accessible surface (at the bottom of the molecule in Fig. 1B).47,48 Despite their location in the 
PUA domain, the mutations apparently fail to impact the binding of the ACA triplet of the H/
ACA RNAs. Moreover, except for potential allosteric effects, the DC mutations do not impact 
intra‑RNP protein‑protein interactions. Therefore, the mutation cluster may impair the interac‑
tion of the RNP with (a) yet to be identified factor(s). Such a factor could be RNP‑specific and 
thus explain a preferential impact on, e.g., telomerase.

Conclusions and Anticipated Developments
The main function of H/ACA RNPs is the modification of target RNAs and based on genetic, 

biochemical and more recently structural studies we have gained detailed insight into their structure 
and function. Some specialized aspects, such as their catalytic mechanism (see chapter by Mueller 
and Ferre‑D’Amare) and their action on spliceosomal snRNPs (see chapter by Karijolich et al) are 
discussed in separate chapters of this book. In particular, two aspects have boosted research into 
H/ACA RNPs, first, their involvement in an inherited disease (DC) and, second, their forming 
part of mammalian telomerase. Despite the wealth of information accumulated on these five 
component particles, many questions remain.

Although it is clear that overall and partial pseudouridylation of ribosomal RNA is important 
for ribosome biogenesis and function,120‑122 we are far from understanding the importance of indi‑
vidual modifications, e.g., is it really the modification that matters or is it the action (hybridization) 
of the respective H/ACA RNP on (to) the target site? In the future, the targets and functions of 
orphan H/ACA RNAs will undoubtedly be unraveled potentially opening entire new areas of 
H/ACA RNP research.

The differences between archaeal and eukaryal H/ACA RNPs have hampered extending 
findings from one to the other. Although archaeal RNPs can be functionally reconstituted from 
recombinant components and crystallized, mammalian RNPs require assembly factors. Moreover, 
the structures of mammalian RNPs can be modeled based on those of the archaeal ones, but about 
one third of their entire RNP structure is still missing due to N‑ and C‑terminal extensions of the 
individual proteins. In the future, mammalian H/ACA RNPs will need to be functionally recon‑
stituted and crystallized from recombinant components and the action of their assembly factors 
determined in more detail.123 Eventually, the analysis of RNPs reconstituted from proteins with 
and without DC mutations and their impact on individual particles will provide insight into the 
molecular mechanism underlying DC.
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