Near-Infrared Biosensor for Multiplex Imaging

Near-Infrared Biosensor for Multiplex Imaging

A family of enzymes called GTPases regulates cell organization and movement and controls the development of cancer and autoimmune diseases. Visualizing how GTPases function can provide insights into how they influence health and disease. In a study published online on April 23 in Nature Chemical Biology, Louis Hodgson, Ph.D., and Vladislav Verkhusha, Ph.D., engineered a new monomeric near-infrared fluorescent protein that absorbs and emits light in the region of the electromagnetic spectrum in which light can pass through animal tissues. By attaching the near-infrared fluorescent protein to a biological sensing domain that detects GTPase activities, the researchers have engineered the first near-infrared biosensor. The biosensor allowed researchers for the first time to simultaneously visualize multiple GTPase activities using near-infrared light and perform optogenetic activation of GTPases in single cells, providing an unprecedented view of cellular processes. Biosensors based on the near-infrared fluorescent protein could also allow for deep-tissue imaging in living animals. Dr. Hodgson is an associate professor, and Dr. Verkhusha is a professor, both of anatomy and structural biology and the Gruss Lipper Biophotonics Center at Einstein.

Related News