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Abstract The H/ACA ribonucleoproteins (RNPs) are
known as one of the two major classes of small nucleolar
RNPs. They predominantly guide the site-directed pseudo-
uridylation of target RNAs, such as ribosomal and splice-
osomal small nuclear RNAs. In addition, they process
ribosomal RNA and stabilize vertebrate telomerase RNA.
Taken together, the function of H/ACA RNPs is essential
for ribosome biogenesis, pre-mRNA splicing, and telomere
maintenance. Every cell contains 100–200 different species
of H/ACA RNPs, each consisting of the same four core
proteins and one function-specifying H/ACA RNA. Most
of these RNPs reside in nucleoli and Cajal bodies and me-
diate the isomerization of specific uridines to pseudouri-
dines. Catalysis of the reaction is mediated by the putative
pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly,
mutations in this housekeeping enzyme are the major de-
terminants of the inherited bone marrow failure syndrome
dyskeratosis congenita. This review details the many di-
verse functions of H/ACARNPs, some yet to be uncovered,
with an emphasis on the role of the RNP proteins. The mul-
tiple functions of H/ACARNPs appear to be reflected in the
complex phenotype of dyskeratosis congenita.

Introduction

The H/ACA ribonucleoproteins (RNPs) were identified
some 8 years ago as small nucleolar (sno)RNPs (Balakin
et al. 1996; Ganot et al. 1997b). The defining molecules of
these RNPs are their small nucleolar RNAs (snoRNAs).
SnoRNAs can be divided into the two major classes, H/
ACA and C/D, and function predominantly in the modifi-
cation of ribosomal RNA (rRNA). The over 200 H/ACA

and C/D snoRNAs specify (by site-directed base pairing) a
similar number of nucleotides in mammalian rRNA for
pseudouridylation and 2′-O-methylation, respectively.Most
snoRNAs are short, 60–150 nucleotides in length, and share
a conserved secondary structure and short sequence ele-
ments termedH andACA in the case ofH/ACAandC andD
in the case of C/D snoRNAs. All H/ACA snoRNAs as-
semble with the same four core proteins to form H/ACA
snoRNPs and all C/D snoRNAs assemblewith another set of
four core proteins to form C/D snoRNPs. Although these
snoRNPs are the founding members of H/ACA and C/D
RNPs, other members have been identified outside of the
nucleolus and/or with additional functions. Several reviews
have covered the many intriguing aspects of snoRNPs,
such as the location of snoRNA genes in introns of mam-
malian genes, the evolution of snoRNPs, the importance of
nucleotide modifications, etc. (Bachellerie et al. 2002;
Decatur and Fournier 2003; Filipowicz and Pogacic 2002;
Henras et al. 2004b; Kiss 2002, 2004; Lafontaine and
Tollervey 1998; Ofengand 2002; Smith and Steitz 1997;
Tran et al. 2004). Our understanding of C/D snoRNPs has
always been a step ahead of that of H/ACA snoRNPs.
However, the identification of vertebrate telomerase as an
H/ACA RNP and the association of H/ACA RNPs with the
bonemarrow failure syndrome dyskeratosis congenita (DC)
have guided H/ACA RNPs into the limelight. This review
focuses on the H/ACA class of RNPs, our expanding
knowledge of their functions, the contribution of their pro-
tein components, and how H/ACA RNPs may be affected
in DC.

H/ACA RNAs

The H/ACA RNAs allow us to distinguish different H/
ACA RNPs. At present there are four classes of H/ACA
RNAs of known function but additional H/ACA RNAs of
unknown function(s) have been identified and are referred
to as orphan H/ACA RNAs (Fig. 1). All H/ACA RNAs
share a consensus 5′–hairpin–hinge–hairpin–tail–3′ sec-
ondary structure with the conserved nucleotides ANANNA
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situated in the hinge region and ACA exactly three posi-
tions from the 3′ end (Fig. 2a) (Balakin et al. 1996; Ganot
et al. 1997b). They can be divided into two groups, guide
and non-guide RNAs.

Guide RNAs

Guide H/ACA RNAs specify uridines in target RNAs for
conversion to pseudouridines by site-directed base pairing
using two 3–10 nucleotide antisense elements (Ganot et al.
1997a; Ni et al. 1997). These elements are complementary
to the sequences flanking the target uridine and are situated
in a bulge of one and/or the other hairpin of an H/ACA
RNA, at either side of the base of a stem forming a pseu-
douridylation pocket (Fig. 2a). In this manner, guide RNAs
hybridize to target RNAs over a stretch of 6–20 nucleotides
bracing the target uridine. To date, the target RNAs iden-

tified are rRNAs and spliceosomal small nuclear RNAs
(snRNAs) (Ganot et al. 1997a; Hüttenhofer et al. 2001;
Jady and Kiss 2001; Ni et al. 1997). In mammals, the
isomerization to pseudouridines of approximately 100 uri-
dines in rRNAs and 27 in snRNAs is guided by a similar
number of H/ACA RNAs. While the rRNA guides are
referred to as snoRNAs based on their accumulation in
nucleoli, snRNA guides are also known as small Cajal
body specific RNAs (scaRNAs) due to their concentration
in Cajal bodies (small nuclear organelles, ∼0.5–1 μm in
diameter, that function, at least in part, as maturation sites
for snRNPs, particularly, in snRNAmodification) (Darzacq
et al. 2002). ScaRNAs contain a short Cajal body targeting
sequence (CAB box) in the terminal loops (of one) of their
hairpins (Richard et al. 2003). The CAB box conforms to a
5′-UGAG-3′ consensus with the third adenine and fourth
guanine nucleotides being most highly conserved. Re-
markably, in some cases, the conserved H/ACA two-hair-
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Fig. 1 Schematic overview of mammalian H/ACA ribonucleopro-
tein (RNP) proteins, RNAs, targets, and functions. The four H/ACA
core proteins forming a protein-only complex (solid colors) and
interacting proteins (light blue) are depicted. Interactions between
the core proteins are based on experimental evidence, i.e., GAR1
and NOP10 associate independently with NAP57 while NHP2 re-
quires the prior association of NAP57 and NOP10. At least one set
of four core proteins associates with each individual H/ACA RNA to
form an RNP (arrows). RNP-independent functions of the proteins
are also possible (question mark). The basic secondary structures of
the five types of H/ACA RNAs and their names and numbers are
shown underneath the RNAs. Note that hairpin sizes vary and in-

sertions may also be present in individual RNAs. The location of
antisense elements, highly conserved sequences, and the template
region of human telomerase RNA (hTR) are indicated by thick black
lines. Cajal body localization consensus elements are drawn in the
stemloops (UGAG). Below the RNAs, the targets of the various
RNPs, ribosomal RNA (rRNA), small nuclear RNAs (snRNAs), and
telomeres, which are pseudouridylated (Ψ), processed (scissors),
and extended by T2AG3 repeats, respectively, are shown. Finally, the
cellular processes affected by the function of the individual RNPs
are indicated at the bottom. Question marks refer to unknown targets
and functions. In the case of one orphan H/ACA RNA, these seem
to be brain specific (see text)
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pin secondary structure of scaRNAs expands by tandem
duplication or integration into a C/D RNA (Darzacq et al.
2002; Jady and Kiss 2001; Kiss et al. 2002, 2004). Finally,
a notable scaRNA (U100) was identified that bears all the
hallmarks of a guide RNA for the pseudouridylation of
uridine in position 9 of U6 snRNA, which, however, is not
modified (Vitali et al. 2003). Therefore, U100 may guide a
function other than pseudouridylation, such as chaperoning
U6 for RNP assembly.

Non-guide RNAs

Non-guide H/ACA RNAs comprise snoRNA U17/E1 and
mammalian telomerase RNA (Kiss and Filipowicz 1993;
Mitchell et al. 1999a; Ruff et al. 1993). Rather than
modifying rRNA, U17/E1 (snR30 in yeast) is required for
processing of pre-rRNA to produce 18S rRNA (Fig. 1)
(Morrissey and Tollervey 1993). This makes snR30 (U17/
E1) essential for ribosome production and consequently
viability (Bally et al. 1988). Recently, two highly con-
served sequence elements were discovered in the bulge of
the 3′ hairpin of U17/E1/snR30 that, despite lack of com-
plementarity to pre-rRNA, proved essential for the early
cleavages of 35S pre-rRNA (Atzorn et al. 2004). These 7
and 9 nucleotide elements are conserved in all U17/E1

homologs that can be identified in budding and fission
yeast, in all vertebrates, and even in the unicellular ciliated
protozoan Tetrahymena thermophila (Atzorn et al. 2004;
Cervelli et al. 2003).

Human telomerase RNA (hTR) provides the template for
the replication of chromosome ends. It extends for 451
nucleotides and the last 240 form a consensus H/ACA two-
hairpin structure while the 5′ half folds into a pseudoknot
containing the template for the reverse transcriptase (Fig. 1)
(Mitchell et al. 1999a). The H/ACA domain of hTR is
required in vivo for hTR accumulation and stability. As in
the case of U17/E1, there is no indication that hTR serves
as a pseudouridylation guide. In fact, in vitro hTR fails to
modify a synthetic substrate that conforms to the standard
rules, i.e., complementarity to the upper halves of the bulge
in either hairpin (Wang and Meier, unpublished results).
Moreover, hTR is a scaRNA since it features a CAB box
and localizes to Cajal bodies in a cell cycle dependent
manner (Jady et al. 2004; Zhu et al. 2004).

Orphan RNAs

Finally, screens of cDNA libraries (generated from size-
selected RNAs and RNAs precipitated with H/ACA core
proteins) for novel H/ACA RNAs in mouse and human
uncovered 12 and 14 H/ACA RNAs, respectively, that lack
complementarity to any of the stable non-coding RNAs,
e.g., rRNAs, snRNAs, and snoRNAs (Hüttenhofer et al.
2001; Kiss et al. 2004; Vitali et al. 2003). These H/ACA
RNAs belong to a growing family of orphan H/ACA
RNAs. They could guide the pseudouridylation of mRNAs
and/or yet to be identified stable RNAs or they could
function in a pseudouridylation guide-independent fashion,
like U17/E1 and hTR. The possibility that some of these
functions/pseudouridylation targets could be tissue specific
was highlighted by the identification of the orphan H/ACA
RNA HBI-36 (Cavaille et al. 2000). HBI-36 is expressed
from the second intron of the serotonin C2 receptor gene.
Like this brain-specific gene, HBI-36 is predominantly
expressed in the choroid plexus. Although no target RNA
has been identified for HBI-36, these findings illustrate
how one tissue could be specifically affected by a general
impairment of H/ACA RNPs, e.g., by mutation of one of
the core proteins. Taken together, while the full functional
realm of H/ACA RNAs remains to be elucidated, they
consist of at least four distinct functional classes; those that
pseudouridylate rRNA, those that process rRNA, those that
pseudouridylate snRNAs, and hTR required for telomere
maintenance (Fig. 1).

H/ACA ribonucleoproteins

The H/ACARNAs, like most cellular RNAs, associate with
proteins to form RNPs. Specifically, each of these 100–200
different H/ACA RNAs associates with the same four core
proteins, NAP57 (dyskerin, Cbf5p), GAR1, NHP2, and
NOP10 to form an H/ACA RNP (Fig. 1) (Balakin et al.
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Fig. 2a, b Structures of H/ACA RNA–rRNA hybrid, uridine, and
pseudouridine. a Schematic representation of the basic two-hairpin
structure of H/ACA RNAs containing the conserved sequence ele-
ments ANANNA in the hinge region (Hinge) and ACA three nu-
cleotides from the 3′ end in red. The name of the RNAs is based on the
hinge region and the ACA triplet. An rRNA hybridizing to a bulge in
the 3′ hairpin with the unpaired uridine (U) to be targeted for pseu-
douridylation is shown (blue). Note for simplification, a second un-
aired nucleotide 3′ to the target uridine is not depicted. Also, H/ACA
RNAs guide pseudouridylation by the bulge in the 3′ and/or 5′ hairpin.
b Structural formulas of uridine (left) and pseudouridine (right). Note
the different location of one of the base nitrogens (red) and the ni-
trogen–carbon versus carbon–carbon glycosidic bond between the
two isomers
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1996; Ganot et al. 1997b; Henras et al. 1998; Lafontaine
et al. 1998; Watkins et al. 1998). These proteins are evo-
lutionarily highly conserved with orthologs in yeast and
archaea (Henras et al. 1998; Meier and Blobel 1994;
Rozhdestvensky et al. 2003; Watanabe and Gray 2000;
Watkins et al. 1998). As judged from genetic depletion
studies in yeast, all four core proteins are essential for
viability and, with the exception of GAR1, required for the
stability of H/ACA RNAs (Bousquet-Antonelli et al. 1997;
Dez et al. 2001; Henras et al. 1998; Lafontaine et al. 1998;
Watkins et al. 1998). Similarly, mammalian NAP57,
NOP10, and NHP2 form a core trimer in vitro that spe-
cifically associates with H/ACA RNAs in the absence of
GAR1 (Wang and Meier 2004). Once assembled, pseu-
douridylation competent H/ACA RNPs are stable and do
not exchange their RNAs, suggesting that new particle
formation requires de novo synthesis (Wang and Meier
2004). When studying H/ACA core proteins, it is important
to keep in mind that they are part of a structurally similar
and stable but functionally heterogeneous group of RNPs
as defined by their RNAs. For example, all core proteins
concentrate in both nucleoli and Cajal bodies of every cell
(Girard et al. 1992; Henras et al. 1998; Meier and Blobel
1994; Pogacic et al. 2000), but their associated H/ACA
RNAs differ between the two organelles, e.g., snoRNAs in
nucleoli and scaRNAs in Cajal bodies. Nevertheless, the
stable core of H/ACA RNPs consists of five components,
four proteins and one RNA (Fig. 1). Although the stoi-
chiometry of the five components needs to be established,
estimates from electron micrographs of purified yeast H/
ACA RNPs are consistent with a particle size that ac-
commodates one RNA and two of each of the four core
proteins (Watkins et al. 1998). In particular, based on the
bipartite structure of these particles and the structural and
functional duplicity of the H/ACA RNA hairpins, one
complement of four proteins could associate with each
hairpin (Lübben et al. 1995; Watkins et al. 1998).

Functional importance

Ribosome biogenesis

Proper activity of H/ACA RNPs impacts three basic cel-
lular functions, ribosome biogenesis, pre-mRNA splicing,
and telomere maintenance (Fig. 1). In ribosome biogenesis,
H/ACA RNPs function in pseudouridylation and process-
ing of rRNA. The majority of H/ACA RNPs direct the
site-specific pseudouridylation of ∼100 uridines in verte-
brate pre-rRNA. Pseudouridine is an isomer of uridine with
its uracil attached via a carbon–carbon instead of a nitro-
gen–carbon glycosidic bond (Fig. 2b). Although pseudo-
uridines represent the most abundant modified nucleosides
in cellular RNAs, their precise functions remain elusive.
On a molecular level, the additional imino group (Fig. 2b,
red) affects the local environment by increasing the rigidity
of the nucleotide and by stabilizing local base stacking
(Arnez and Steitz 1994; Charette and Gray 2000; Davis
1995; Meroueh et al. 2000).

The following points indicate the importance of these
local effects of pseudouridines for ribosome function. First,
rRNAs of all organisms contain pseudouridines and their
number increases over evolution, e.g., 11 in Escherichia
coli rRNA, 44 in Saccharomyces cerevisiae, and ∼91 in
humans (Maden 1990; Ofengand 2002). Second, even
though rRNA is pseudouridylated at the level of its pre-
cursor, only uridines in regions that form part of mature
rRNA are isomerized, suggesting a function in the ribosome
(Brand et al. 1979; Jeanteur et al. 1968). Third, most pseu-
douridines (and 2′-O-methyl groups) cluster in functionally
important regions of rRNA, e.g., the peptidyl transferase
center and contact regions between the large and small ri-
bosomal subunits (Bakin et al. 1994; Decatur and Fournier
2002). Fourth, omission of some of the pseudouridines in
the peptidyl transferase center of bacterial and yeast ri-
bosomes (by deletion of the site-specific pseudouridine
synthases and the specific H/ACA snoRNAs, respectively)
impairs growth (King et al. 2003; Raychaudhuri et al. 1998).
In one case, this growth defect could be attributed to func-
tionally impaired ribosomes (King et al. 2003). Similarly,
global inhibition of rRNA pseudouridylation below detec-
tion limits by site-directed mutagenesis of the yeast pseu-
douridylase Cbf5p essentially renders cells inviable above
and below 25°C (Zebarjadian et al. 1999). However, lack
of pseudouridines in other positions of rRNA, even if
highly conserved, had minor or no effects on growth, de-
tectable only in competitive growth experiments in which
the wild-type cells outcompeted those lacking certain pseu-
douridines in rRNA (Badis et al. 2003; King et al. 2003;
Ofengand 2002; Parker et al. 1988; Samarsky et al. 1995).
Overall, these data point to a requirement for pseudouri-
dines in certain positions of rRNA while their impact in
other positions may be minute and only detectable over a
long period of time and with sensitive assays.

Perhaps the most important impact of H/ACA RNPs
on ribosome biogenesis is that on pre-rRNA processing.
Although only one mammalian H/ACA RNP (U17/E1)
mediates this process, it stands out because its activity is
essential for ribosome biogenesis and consequently cell
viability, as demonstrated with its yeast ortholog snR30
(Bally et al. 1988; Morrissey and Tollervey 1993). H/ACA
RNP U17/E1, therefore, warrants particular attention when
globally impacting H/ACA RNPs, i.e., via mutations in one
of their core proteins.

Pre-mRNA splicing

Pre-mRNA splicing is affected by the pseudouridylation of
spliceosomal snRNAs by vertebrate H/ACA RNPs (Fig. 1).
With the exception of U11 and U6atac, all snRNAs of
major and minor spliceosomes contain at least one pseu-
douridine (Massenet et al. 1998). As in the case of rRNA,
pseudouridines cluster in functionally important regions of
snRNAs, e.g., in nucleotides that base pair with other
snRNAs or with intronic consensus sites of pre-mRNAs.
Best studied are the functions of the 13 pseudouridines of
U2 snRNA. In an elegant set of experiments Yi-Tao Yu and
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coworkers documented the requirement of U2 modifica-
tions near its central branch site recognition region for
snRNP biogenesis and pre-mRNA splicing in Xenopus
oocytes (Yu et al. 1998; Zhao and Yu 2004). In contrast, in
HeLa nuclear extracts, modifications at the 5′ end of U2
may be essential for splicing (Donmez et al. 2004). A func-
tional mechanism for the highly conserved pseudouridine
of U2 that lies opposite the branch site adenosine of introns
of pre-mRNA has been proposed. This pseudouridine dra-
matically alters the local structure of a model RNA duplex,
which may help make the nucleophile accessible for the
first step of splicing (Newby and Greenbaum 2001, 2002).
Surprisingly, yeast can survive without this particular pseu-
douridine in its U2 snRNA (Behm-Ansmant et al. 2003;
Ma et al. 2003). Although we are far from understanding
the specific roles of the hundreds of pseudouridines, these
findings exemplify how a pseudouridine can impact the
structure and function of the RNA it resides in. Since in
vertebrates pseudouridylation of snRNAs is mediated by
H/ACARNPs (Darzacq et al. 2002; Hüttenhofer et al. 2001;
Jady and Kiss 2001; Kiss et al. 2002, 2004), the preceding
observations illustrate how an effect on all H/ACA RNPs
could be particularly deleterious to cells by inhibition of
splicing.

In addition to spliceosomal snRNAs, some snoRNAs
(U3 and U8) involved in pre-rRNA processing also contain
pseudouridines (Kato and Harada 1984; Reddy et al. 1979).
However, there is no insight as to the function of these
modifications. Given that most snoRNAs or, for that matter,
other RNAs have not been analyzed for their state of
modification, could there be other stable cellular RNAs and
possibly even mRNAs that are pseudouridylated? For ex-
ample, a C/D RNP mediates 2′-O-methylation of archaeal
pre-tRNATrp (Bortolin et al. 2003; Singh et al. 2004).
Analogously, the formation of some pseudouridines in
tRNAs could be catalyzed by H/ACA RNPs.

Telomere maintenance

Telomere maintenance depends on one H/ACA RNP, the
vertebrate telomerase RNP. In vivo, the H/ACA domain of
hTR is essential for hTR accumulation, hTR 3′ end pro-
cessing, and telomerase activity (Mitchell et al. 1999a). For
example, stable expression in yeast of the mature form of
heterologous hTR, like that of all H/ACA RNAs, depends
on its association with the three H/ACA core proteins
Cbf5p, Nhp2p, and Nop10p (Dez et al. 2001). Therefore,
proper assembly and function of H/ACA RNPs will also
affect telomere function and consequently play crucial
roles in cellular senescence and cancer (de Lange 2002).

In summary, H/ACA RNPs are multifunctional particles
with new functions possibly to be identified. Of all their
presently known functions, the role of H/ACA RNPs in
ribosome biogenesis and pre-mRNA splicing (through
rRNA processing and snRNA pseudouridylation), due to
the essential nature of these processes, is likely to have the
most immediate impact on cell growth and viability.

Dyskeratosis congenita

As a target of the inherited disorder DC, the functional
importance of H/ACA RNPs is further highlighted. Dys-
keratosis congenita (also known as Zinsser–Engmann–
Cole syndrome) manifests itself first by the three cutaneous
features of nail dystrophy, abnormal skin pigmentation, and
mucosal leucoplakia, hence the name (Cole et al. 1930;
Engmann 1926; Zinsser 1910). The majority of patients
(85.5%) develop bone marrow failure, usually before the
age of 30, as the leading cause of premature mortality.
Dyskeratosis congenita also is characterized by a predis-
position tomalignancy in rapidly dividing tissues (for recent
reviews, see Dokal andVulliamy 2003;Marrone andMason
2003). In addition, many other somatic abnormalities have
been reported, such as epiphora, mental retardation, pul-
monary disease, hair loss, and short stature, markingDC as a
multi-system disorder and contributing to the general het-
erogeneity of its phenotype.

Dyskeratosis congenita is inherited in three patterns, X-
linked, autosomal dominant (AD), and autosomal recessive
(AR). X-linked DC (X-DC) is the most frequent and severe
form followed by AR and AD forms (Dokal 2000). AD-DC
is the mildest form and can go unnoticed until the fifth
decade of life. X-DC is caused by mutations in the gene
DKC1 encoding NAP57 (dyskerin) and AD-DC by muta-
tions in the gene encoding hTR (Heiss et al. 1998; Vulliamy
et al. 2001a). The gene affected in AR-DC has yet to be
mapped. Therefore two components of H/ACA RNPs are
implicated in the molecular mechanism of DC: a core pro-
tein that is part of all H/ACA RNPs (X-DC); and hTR, the
RNA component of one specific H/ACA RNP, telomerase
(AD-DC). The discovery of NAP57 as part of the telo-
merase RNP along with the documentation of shortened
telomeres in cells from patients with X-DC and AD-DC led
to the theory that DC in general was caused by telomere
dysfunction (Mitchell et al. 1999a,b; Vulliamy et al. 2001a,
b). However, given the broad range of functions of H/ACA
RNPs as outlined in the previous section, it could not
be excluded that other activities of H/ACA RNPs might
be impaired in X-DC and contribute to its complex phe-
notype. Indeed, two recent studies in mice now support
this suspicion.

Mice deficient for telomerase RNA demonstrate that
telomere attrition can lead to chromosome instability, can-
cer and early onset of aging phenotypes, all features ob-
served in human DC (Blasco et al. 1997). However, due to a
peculiarity of laboratory mice (their telomeres are three to
four times longer than those of humans), these phenotypes
manifest themselves only after four to six generations. It
was remarkable, therefore, when a hypomorphic NAP57
mouse model closely replicated the phenotype of DC in the
first generation in the absence of any telomere effects
(Ruggero et al. 2003). These mice showed reduced pseu-
douridylation of rRNA, impaired pre-rRNA processing,
and impaired translation, suggesting that impairment of
non-telomerase targets also resulted in a DC phenotype
(Ruggero et al. 2003). In a second approach, Mochizuki
et al. (2004) introduced two NAP57 mutations that are
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observed in patients presenting with typical X-DC into
murine embryonic stem (ES) cells. Both ES cell lines
showed reduced levels of certain H/ACA snoRNAs (al-
though not the same) and a decrease in rRNA processing
and overall levels of pseudouridine in rRNA. Only one of
the two ES cell lines, however, exhibited reduced amounts
of hTR, telomerase activity, and shortened telomeres.
Again, these data documented that functions of H/ACA
RNPs other than those associated with telomerase are
affected in X-DC (Mochizuki et al. 2004). Interestingly, an
effect on ribosome biogenesis may be a general hallmark of
rare bonemarrow failure disorders, as about 25% of cases of
Diamond–Blackfan anemia are caused by mutations in the
RPS19 gene, encoding a protein of the small ribosomal
subunit (Cmejla et al. 2000; Draptchinskaia et al. 1999;
Ramenghi et al. 2000; Willig et al. 1999). How this trans-
lates into the complex phenotypes of these disorders re-
mains to be elucidated. Nevertheless, these studies teach us
that it is important to understand the molecular impact of
X-DC mutations on each individual H/ACA RNP to deter-
mine whether and how it is affected.

H/ACA proteins

Although a plethora of work and reviews on structure,
function, and biogenesis of H/ACA RNAs has been pub-
lished (see Introduction), much less is known about the
H/ACA core proteins and how they form H/ACA RNPs.
This is mostly due to the fact that while individual H/ACA
RNAs can readily be studied, the core proteins are always
part of a mixed population of over 100 different, but re-
lated, complexes that complicate the readout of any ex-
periment. This section reviews the individual H/ACA RNP
core proteins.

NAP57

NAP57 is perhaps the best-known H/ACA protein because
it is the target of X-DC and the putative pseudouridylase
of H/ACA RNPs. Originally NAP57 was recognized in
yeast as the centromere binding factor Cbf5p (Jiang et al.
1993). Mammalian NAP57 was identified as a Nopp140
associated protein of 57 kDa (Meier and Blobel 1994) and
later also named dyskerin due to its link to X-DC (Heiss
et al. 1998). Nopp140 appears to be a chaperone of both
H/ACA and C/D RNPs with which it interacts without
being an integral part (see below; Yang et al. 2000).
NAP57, like all snoRNP-associated proteins, is phyloge-
netically highly conserved. Over most of its sequence it is
70% identical to the yeast Cbf5p and 34% identical over a
considerable stretch to the bacterial pseudouridine synthase
TruB (Fig. 3a; Meier and Blobel 1994; Nurse et al. 1995).
Its function as a pseudouridylase is supported by the nega-
tive effect on rRNA pseudouridylation of genetic depletion
of Cbf5p and its fly ortholog minifly and of point mutations
in its catalytic domain (Giordano et al. 1999; Lafontaine
et al. 1998; Zebarjadian et al. 1999). NAP57 and its or-

thologs are an integral part of all H/ACA snoRNPs tested,
including vertebrate telomerase (Lafontaine et al. 1998;
Mitchell et al. 1999b; Yang et al. 2000). In its amino-
terminal half, NAP57 contains two short motifs that are
conserved in most pseudouridine synthases (Fig. 3a,Ψ) and
in the carboxy-terminal half, it has an RNA binding domain
conserved in pseudouridylases and archaeosine transgly-
cosylases (Fig. 3a, PUA) (Aravind and Koonin 1999;
Gustafsson et al. 1996; Koonin 1996). The second Ψ motif
contains a universally conserved aspartate (D125 in human
NAP57) that apparently forms a covalent enzyme–substrate
intermediate during the isomerization of uridine to pseu-
douridine (Fig. 3a, asterisk) (Gu et al. 1999; Hoang and
Ferre-D’Amare 2001; Huang et al. 1998; Spedaliere et al.
2004). The carboxy terminus of NAP57 is highly charged
with three lysine clusters separated by acidic stretches
(Fig. 3a, K). A fourth lysine cluster is present in its amino
terminus and most clusters can function as nuclear lo-
calization sequences (Heiss et al. 1999; Youssoufian et al.
1999). NAP57 is concentrated in the dense fibrillar com-
ponent of nucleoli and in Cajal bodies together with the
other H/ACA core components (Fig. 4) (Meier and Blobel
1994).

Additional NAP57 functions

NAP57 exerts at least two functions, one as enzyme and
one as crucial building block of H/ACA RNPs. Given the
essential functions of some of the H/ACA RNAs (see
above), it is not surprising that NAP57 is encoded by an
essential gene in yeast, fly, and mice, where a knockout is
embryonically lethal (Giordano et al. 1999; He et al. 2002;
Jiang et al. 1993; Phillips et al. 1998). However, additional
functions may contribute to the importance of NAP57 and
the complex phenotype of X-DC caused by its mutation.
These functions are mostly inferred from genetic evidence
from the yeast ortholog Cbf5p. A centromeric function is
implied by the suppression of a temperature-sensitive mu-
tation in one of the subunits of the yeast centromere DNA
binding complex CBF3 by the overexpression of Cbf5p
(Jiang et al. 1993). Cbf5p involvement with the nuclear
cap-binding complex of pre-mRNAs and snRNAs is sug-
gested by its synthetic lethal phenotype with a deletion of
both subunits together (Fortes et al. 1999). An association
of Cbf5p with nuclear organization is supported by a
mutation in CBF5 that (likely due to reduced expression)
disrupts nucleolar localization of pre-tRNAs and suppres-
ses a transcriptional silencing effect of tRNA genes on
nearby RNA polymerase II promoters (Kendall et al. 2000).
Finally, a link of Cbf5p to rRNA transcription is estab-
lished by the suppression of a temperature-sensitive CBF5
allele, cbf5-1, by the overexpression of the RNA polymer-
ase I transcription factor Rrn3p (Cadwell et al. 1997). Im-
portantly, because rRNA pseudouridylation is normal in a
cbf5-1 strain and the lethal phenotype of cbf5-1 at the
nonpermissive temperature is partially rescued by tran-
scription of rRNA from an RNA polymerase II-driven
promoter, Cbf5p must also play an essential role in poly-
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Fig. 4a–d Double immunofluorescence of NAP57 and nucleolin in
HeLa cells. Indirect immunolocalization of NAP57 (a) and nucleolin
(b) in fixed and permeabilized HeLa cells. c Merged immunoflu-
orescence of a and b combined with DNA stain (blue). d Phase
contrast image of the same two cells shown in the other panels. Note
the granular staining of NAP57, reflecting its localization to the
dense fibrillar component of nucleoli, as compared with the more

uniform staining of nucleolin, which is present in all parts of
nucleoli. Note how the green of the nucleolin label extends beyond
that of the partially colocalizing NAP57 (yellow in the merged
image, c). In addition, and unlike nucleolin, NAP57 also concen-
trates in Cajal bodies (extra-nucleolar red dots, particularly well
visible in the merged image, c)
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Fig. 3a, b Domains of H/ACA and C/D core proteins. a Schematic
of human NAP57 drawn to scale (amino acid positions marked under
sequence) indicating various sequence elements, lysine-rich stretches
(green, K) often separated by acidic serine clusters, two motifs
conserved in most pseudouridylases (red, Ψ), and a domain con-
served in pseudouridylases and archaeosine transglycosylases (blue,
PUA). The catalytic aspartate at amino acid 125 is highlighted
(asterisk). The positions of mutations identified in patients with
dyskeratosis congenita (DC) are indicated above the sequence
(arrowheads). The total number of tightly clustered mutations is
printed over the arrowheads. The most frequent mutation, A353V,
observed in ∼40% of X-DC cases is enlarged. White dots in the

arrowheads indicate that this residue has been mutated to two
different amino acids. Additionally, a carboxy-terminal truncation is
specified (Δ). The percent identity of human NAP57 to its mouse
(Mus musculus), yeast (Saccharomyces cerevisiae), and bacterial
(Escherichia coli) homologs over a certain range (brackets) is given
below. b Comparison of the domains of core proteins of H/ACA (left)
and C/D RNPs (right). The sequences are drawn to scale and the
domains are as in a. In addition, glycine–arginine-rich (RGG) and
conserved methyltransferase domains are indicated. Sequence iden-
tity between two proteins is given in light green or blue. Note 15.5K is
also known as NHP2L1/NHPX and Snu13p in yeast
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merase I-driven rRNA transcription (Cadwell et al. 1997;
Zebarjadian et al. 1999). Similarly, a second essential func-
tion for Cbf5p is implied from complementation studies
with rat NAP57. Specifically, heterologous expression of
NAP57 rescues the growth arrest and loss of H/ACA RNAs
caused by genetic depletion of Cbf5p, but not the lethal
phenotype of cbf5-1 at nonpermissive temperature or that of
a cbf5 deletion (Yang et al. 2000). Presumably, genetic de-
pletion leaves behind an imperceptible but essential fraction
of Cbf5p whose function NAP57 fails to rescue. Although
there are clear functional differences between yeast Cbf5p
and vertebrate NAP57, these data suggest functions for the
two orthologs in addition to those associated with H/ACA
RNAs. In fact, it is not clear whether any Cbf5p/NAP57
exists free in the cell independent from H/ACA RNPs, al-
though glycerol gradient analysis of nuclear extracts sug-
gests that it would have to be a minor amount (Wang et al.
2002). Interestingly, all additional functions of Cbf5p de-
scribed above appear to be gene dosage dependent. This is
also reflected in the severe effects caused by decreased
expression of NAP57 in the X-DC mouse model, in flies,
and in humans with a DC mutation in the NAP57 promoter
resulting in its reduced expression (Giordano et al. 1999;
Kauffman et al. 2003; Knight et al. 2001; Ruggero et al.
2003; Salowsky et al. 2002). Therefore, NAP57 is a multi-
functional protein whose dosage is extremely important to
the well-being of cells and organisms. In the case of AD-
DC, where hTR is mutated, slight changes in NAP57 levels
could explain effects on NAP57 related functions. For ex-
ample, AD-DC mutations in hTR could cause its deg-
radation and free up an incremental but critical amount of
NAP57, thereby leading to phenotypes other than those
attributed to lack of telomerase activity. Because hTR
represents a minor fraction of cellular H/ACA RNAs, this
hypothesis may be far-fetched, but it is testable. For in-
stance, mice carrying AD-DC mutations in telomerase
RNA should manifest a DC phenotype in the first gener-
ations before telomere effects are noticeable.

X-DC mutations

Most of the over 30 DC mutations identified in NAP57 are
missense mutations, often leading to conservative amino
acid exchanges. In addition, a short carboxy-terminal trun-
cation, two intronic base changes and a mutation in the
promoter have been identified (Knight et al. 1999, 2001;
Salowsky et al. 2002; Vulliamy et al. 1999). Although
distributed throughout the open reading frame, DC muta-
tions tend to cluster in two places, an amino-terminal re-
gion outside the conserved Ψ motifs and between amino
acids 300 and 400 comprising the conserved PUA domain
(Fig. 3a). Many of these mutations are quite subtle and
their impact on the structure and function of NAP57 is
not immediately obvious. This is perhaps best illustrated
by the alanine 353 to valine mutation, which accounts for
∼40% ofX-DC cases (Dokal andVulliamy 2003). Themost

surprising aspect of this mutation is that in the yeast or-
tholog Cbf5p, the corresponding residue is a valine. There-
fore, yeast Cbf5p contains compensatory mutations or this
X-DCmutation affects a mammalian-specific NAP57 func-
tion, such as its association with hTR and scaRNAs or a
putative extra-RNP activity. Indeed, impact of DC muta-
tions on NAP57-specific and H/ACA RNP-independent
functions is a reasonable possibility because no DC muta-
tions have been identified in any of the genes encoding the
other three core proteins (Marrone and Mason 2003). In
contrast, Fanconi Anemia, another inherited bone marrow
failure syndrome, is associated with mutations in every
gene of a multi-subunit complex (reviewed in Tischkowitz
and Dokal 2004).

Additional core proteins

In addition to NAP57, three small basic proteins asso-
ciate with all H/ACA RNAs: GAR1 (22.3 kDa), NHP2
(17.2 kDa), and NOP10 (7.7 kDa) (Fig. 3b; Balakin et al.
1996; Ganot et al. 1997b; Henras et al. 1998; Watkins et al.
1998). GAR1 consists of a central core domain flanked by
two glycine–arginine-rich (GAR) domains (Girard et al.
1992). The core domain of yeast Gar1p is sufficient for
viability and binds H/ACA snoRNAs in vitro (Bagni and
Lapeyre 1998; Girard et al. 1994). NHP2 was originally
identified as a nonhistone chromatin protein (Kolodrubetz
et al. 1988). It is homologous to the ribosomal protein L30
and to 15.5K/NHP2L1/NHPX (Snu13p in yeast) shared
between C/D snoRNPs and U4 spliceosomal snRNPs
(Henras et al. 1998; Leung and Lamond 2002; Nottrott et al.
1999; Watkins et al. 1998, 2000). Unlike its homologs,
NHP2 alone does not bind to a specific RNA motif but
associates non-specifically with RNA secondary structures
(Henras et al. 2001; Wang and Meier 2004). NOP10,
although conserved like the other core proteins, contains no
known motifs and measures only 64 amino acids (Henras
et al. 1998). Like NAP57, all these proteins are concen-
trated in nucleoli and Cajal bodies of mammalian cells,
reflecting the location of H/ACA RNPs (Fig. 4) (Pogacic
et al. 2000).

Comparison with C/D core proteins

Although H/ACA and C/D RNPs both function in site-
directed RNAmodification, they consist of different classes
of RNAs and proteins. However, both contain four core
proteins that are homologous or share domains with each
other (Fig. 3b). Interestingly, the putative enzymes of the
two types of RNPs, the pseudouridylase NAP57 and the
methylase fibrillarin, do not share their domains with each
other but with NOP56 and NOP58 and with GAR1, re-
spectively. Specifically, NAP57 shares its lysine-rich car-
boxyl terminus with NOP56 and NOP58, while both GAR1
and fibrillarin contain glycine–arginine-rich domains. NHP2
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shares its RNA binding capacity, but not specificity, and
overall structure with the 15.5K/NHP2L1/NHPX C/D core
protein. Indeed, both proteins have a common relative in
archaea, L7Ae, which is part of archaeal H/ACA and
C/D RNPs and ribosomes (Rozhdestvensky et al. 2003;
Tran et al. 2004). NOP10 apparently lacks a homologous
counterpart in C/D snoRNPs. It is not clear whether the
core proteins of these two diverse RNPs acquired homol-
ogous domains because of their related working environ-
ment or if they evolved from distant common ancestors, as
in the case of NHP2 and 15.5K/NHP2L1/NHPX (Fig. 3b).

H/ACA RNP assembly

The association of the four core proteins with H/ACA
RNAs was originally demonstrated by coprecipitation and
copurification in yeast (Balakin et al. 1996; Ganot et al.
1997b; Henras et al. 1998; Lafontaine et al. 1998; Lübben
et al. 1995; Watkins et al. 1998) and subsequently con-
firmed in mammalian cells (Dragon et al. 2000; Mitchell
et al. 1999b; Pogacic et al. 2000; Yang et al. 2000). Only
recently was the assembly pathway of H/ACA RNPs elu-
cidated using in vitro translated proteins followed by im-
munoprecipitation (Wang and Meier 2004). In contrast to
the assembly of other RNPs, which is frequently initiated
by protein–RNA interactions, e.g., in the case of 15.5K and
C/D snoRNAs (Watkins et al. 2002), H/ACA core proteins
form a protein-only complex (Fig. 1). Specifically, GAR1
and NOP10 associate with NAP57 independently while
binding of NHP2 requires prior interaction between NOP10
and NAP57 (Wang and Meier 2004). The specificity for
H/ACA RNA recognition is provided by the core trimer of
NAP57–NOP10–NHP2 and is GAR1 independent. Step-
wise disassembly of affinity purified H/ACA RNPs con-
firms these interactions in yeast, suggesting that they, like
the individual proteins and RNAs, are phylogenetically
conserved (Henras et al. 2004a). Although the existence of
additional H/ACA core proteins cannot be excluded, the
combination of all these studies strongly indicates that
NAP57, NOP10, NHP2, and GAR1 constitute the com-
plete set of H/ACA core proteins.

H/ACA RNP interacting proteins

Several proteins have been identified that interact with H/
ACA RNPs without being an integral part. Nopp140,
SMN, NAF1, and SHQ1 have been associated with H/
ACA RNPs based on their ability to interact with one or
several of the core components (Fig. 1; Dez et al. 2002;
Fatica et al. 2002; Meier and Blobel 1994; Pellizzoni et al.
2001; Whitehead et al. 2002; Yang et al. 2002). Addi-
tionally, Rnt1p, the yeast RNase responsible for the earliest
cleavage event at the 3′ end of pre-rRNA, physically inter-
acts with Gar1p and seems involved in the nuclear import
of H/ACA RNP core proteins (Tremblay et al. 2002).

NAF1–SHQ1 complex

The nuclear assembly factor, Naf1p, and the factor re-
quired for snoRNA of the H/ACA class quantitative accu-
mulation, Shq1p, are two interacting proteins in yeast
nuclei whose genetic depletion causes specific loss of all
H/ACA snoRNAs (Dez et al. 2002; Fatica et al. 2002;
Yang et al. 2002). While both proteins associate with
Nhp2p, Naf1p additionally binds the three remaining H/
ACA core proteins. However, neither protein is part of
mature H/ACA RNPs. Naf1p shares an RNA binding do-
main with GAR1 and binds non-specifically to secondary
structure elements in RNA, analogous to Nhp2p (Fatica et
al. 2002; Henras et al. 2001). Based on these and other
qualities, Naf1p and Shq1p have been implicated in the
assembly of H/ACA RNPs (Dez et al. 2002; Fatica et al.
2002; Yang et al. 2002). Because both yeast proteins are
phylogenetically conserved, they likely harbor a similar
function in mammalian cells.

SMN

The survival of motor neurons protein, SMN, is affected in
autosomal recessive spinal muscular atrophy (the leading
genetic cause for infant death) and forms the core of a
multiprotein complex that assembles Sm proteins onto
spliceosomal snRNAs (Gubitz et al. 2004; Meister et al.
2002; Terns and Terns 2001). SMN interacts with Sm
proteins via their GAR domains. Similarly, SMN binds to
the related domains of GAR1 and fibrillarin and, therefore,
may also be involved in assembly of snoRNPs (Jones et al.
2001; Pellizzoni et al. 2001; Whitehead et al. 2002). How-
ever, such an activity would be restricted to higher eukary-
otes as yeast lacks a recognizable SMN homolog.

Nopp140

The nucleolar and Cajal body phosphoprotein Nopp140 is
currently the only protein that associates with mature H/
ACA RNPs. It is not a stable component of H/ACA RNPs
because a concentration of 500 mM salt dissociates it from
the RNPs without affecting their integrity (Meier and
Blobel 1992; Wang et al. 2002; Yang et al. 2000). In fact,
NAP57 was identified as a Nopp140 associated protein
(Meier and Blobel 1994). However, the interaction with
H/ACA RNPs may occur through several components
because individual core proteins or RNAs fail to interact in
two- or three-hybrid assays, respectively (Wang et al.
2002). Loss of Nopp140–H/ACA RNP interaction by de-
phosphorylation of Nopp140 suggests that the association
is governed by phosphorylation (Wang et al. 2002).
Nopp140 also interacts with C/D snoRNPs and may func-
tion as a general chaperone of snoRNPs because its deple-
tion from nucleoli and Cajal bodies co-depletes H/ACA and
C/D RNPs (Isaac et al. 1998; Yang et al. 2000). Recent data
suggest an involvement of Nopp140 in the assembly of C/D
RNPs (Watkins et al. 2004). Additionally, Nopp140 has
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been implicated in rRNA transcription (Chen et al. 1999),
as a transcriptional coactivator and protein kinase A de-
pendent mediator of the acute phase response in liver (Chiu
et al. 2002; Miau et al. 1997), and in the induction of intra-
nuclear membrane cisternae in endometrial cells that may
be important for human blastocyst attachment (Isaac et al.
2001). Through Nopp140, therefore, H/ACA RNPs could
impact a whole range of cellular and tissue-specific pro-
cesses. Like most other proteins affiliated with H/ACA
RNPs, Nopp140 is evolutionarily conserved and has a
counterpart in yeast, Srp40p (Meier 1996).

Proteins specific to an H/ACA RNP

Given the large number and variety of H/ACA RNAs, it is
likely that certain H/ACA RNPs harbor specific proteins
that are an integral part of the particle. Currently, the only
such H/ACA RNP-specific protein known is the catalytic
subunit of the telomerase RNP, the reverse transcriptase
TERT (Lingner et al. 1997; Weinrich et al. 1997). Inter-
estingly however, although hTR is present in most so-
matic cells, presumably stabilized by the four H/ACA core
proteins (see above), TERT is not (reviewed in Cong et al.
2002).

Evolution

The diverse mammalian H/ACA RNPs highlighted in this
review originate from single-protein enzymes that evolved
to accommodate multiple functions (reviewed in Lafontaine
and Tollervey 1998). In bacteria, distinct enzymes both
recognize the uridine for isomerization and catalyze the
pseudouridylation of rRNA and tRNA.Mammalian NAP57
and yeast Cbf5p are most closely related to the E. coli en-
zyme TruB responsible for formation of the almost uni-
versally conserved pseudouridine at position 55 in tRNA
(Fig. 3a). In eukaryotes, a distinct enzyme also catalyzes
this modification, while NAP57 and Cbf5p are integral
parts of H/ACARNPs. The origin of H/ACARNPs appears
to predate the split between archaea and eukaryotes, as they
have also been identified in archae-, but not eubacteria
(Rozhdestvensky et al. 2003; Watanabe and Gray 2000). H/
ACA RNPs seem to have evolved with increasing numbers
of pseudouridines in target RNAs as illustrated by striking
differences between yeast and mammals. In particular, from
yeast tomammals, the numbers of pseudouridines in rRNAs
and snRNAs increases from 44 to ∼91 and from six to 27,
respectively (Massenet et al. 1998; Ofengand 2002). In both
organisms pseudouridylation of rRNA is mediated by H/
ACA RNPs while that of snRNAs, in yeast, unlike mam-
mals, is catalyzed by distinct enzymes (Behm-Ansmant
et al. 2003; Ma et al. 2003; Massenet et al. 1999; Zhao et al.
2002). Moreover, and unlike vertebrate H/ACA telomerase
RNA, yeast telomerase RNA forms a snRNP-like particle
with Sm proteins (Mitchell et al. 1999a; Seto et al. 1999).
Evidently, H/ACA RNPs have adopted a whole range of
functions across evolution. This is perhaps best illustrated

by the discovery of a brain-specific H/ACA RNA in mam-
mals (Cavaille et al. 2000) despite the fact that all previous
activities of H/ACA RNPs are housekeeping functions
important for the viability of every single cell.

Conclusions and perspectives

H/ACA RNPs perform multiple basic functions in all cells
from archaea to mammals. Their functions are defined by
one of over 100 H/ACA RNAs, each associated with the
same four core proteins. Although simple five-component
particles, they are functionally diverse and complex. There-
fore, how will mutations in one component affect the
different but similar RNPs? This question of course is at
the heart of X-DC where NAP57 is mutated. Genetic
depletion studies in yeast teach us that NAP57 is essential
for the stability of all H/ACA RNPs. Analysis of X-DC
patient samples and transgenic mouse ES cells harboring
X-DC mutations suggests that mutations in NAP57 affect
different H/ACA RNPs to various degrees. However, while
peripheral lymphocytes of all DC patients, X-DC and AD-
DC, show telomere shortening (Vulliamy et al. 2001a,b),
some disagreement remains as to the impact on other H/
ACA RNP functions (Meier 2003). Some studies report no
effect on snoRNAs and scaRNAs and consequently rRNA
and snRNA pseudouridylation (Mitchell et al. 1999b; Wong
et al. 2004). However, studies with an X-DC mouse model
and transgenic ES cells find impaired rRNA pseudouridy-
lation and reduced amounts of certain H/ACA snoRNAs
(Mochizuki et al. 2004; Ruggero et al. 2003). Similarly,
extracts from X-DC patient cell lines compared with those
from the carrier mother, exhibit reduced in vitro pseudour-
idylation of certain rRNA target sites that correlates with
a reduced amount of the corresponding H/ACA snoRNA
detected on Northern blots (Roy, Wang, and Meier, unpub-
lished results). Obviously, further experimentation is indi-
cated with a larger sampling of patient cells and analysis of
all potential functions affected by H/ACA RNPs. In partic-
ular and to determine the molecular mechanism of DC and
H/ACA RNPs in general, it will be important to study the
impact of NAP57 mutations on the structure and assembly
of individual H/ACA RNPs.

Finally, X-DC is a fascinating example of an inherited
disease with a complex phenotype that is caused by muta-
tions in a protein involved in some of the most basic
functions of every cell. This is similar to laminopathies
characterized by mutations in lamin A, a structural protein
of the nuclear envelope, that cause various muscular and
lipodystrophies and even progeria, a severe form of ac-
celerated aging (reviewed in Burke and Stewart 2002;
Hutchison and Worman 2004). The dissection of the mo-
lecular mechanisms of these diseases is teaching us about
expected and unexpected functions of these housekeep-
ing proteins in mammalian organisms. Since the study of
snoRNAs and snoRNPs has already yielded many surprises
and even revision of dogmas, we can only look forward to
what other targets and functions of H/ACA RNPs will be
revealed.
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