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JNK1 plays an important part in this process provides an
intriguing new clue about the events that underlie this
complex intracellular signaling process.
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How a single protein complex accommodates many
different H/ACA RNAs
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More than 100 mammalian H/ACA RNAs form an equal

number of ribonucleoproteins (RNPs) by associating

with the same four core proteins. The function of these

H/ACA RNPs is essential for biogenesis of the ribosome,

splicing of precursor mRNAs (pre-mRNAs), maintenance

of telomeres and probably for additional cellular

processes. Recent crystal structures of archaeal H/ACA

protein complexes show how the same four proteins

accommodate O100 distinct but related H/ACA RNAs
and reveal that a spatial mutation cluster underlies

dyskeratosis congenita, a syndrome of bone marrow

failure.
Introduction

Most mammalian H/ACA ribonucleoproteins (RNPs)
engage in the isomerization of uridines to pseudouridines
(termed ‘pseudouridylation’) in ribosomal and spliceosomal
small nuclear RNAs. Although the function of most
pseudouridines is unknown, some are essential for optimal
translation and for pre-mRNA splicing [1]. Perhaps the
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most intriguing species of H/ACA RNPs are defined by the
small nucleolar RNA U17 (also known as E1, or snR30 in
yeast), telomerase RNA (which ends in an H/ACA RNA
structure), and a growing number of orphan H/ACA RNAs
(which lack complementarity to any stable RNAs) [2]. U17
is the only essential H/ACA RNA and is required for
processing pre-ribosomal RNA; telomerase RNA is required
for replication of chromosome ends; and the orphan H/ACA
RNAs have, by definition, unknown functions but are
potentially involved in important processes similar to those
of U17 and telomerase RNA [3] (Figure 1).

Recently, three groups have solved the crystal struc-
tures of archaeal H/ACA RNP core complexes consisting of
two or three of the core proteins [4–6] (Figure 1). These
structures are providing the first molecular details of both
protein–protein interactions in the H/ACA core complex
and the pseudouridylase itself.

H/ACA RNPs

H/ACA RNAs constitute one of the two principal classes of
small nucleolar and Cajal body RNAs (Figure 1); the other
class is the C/D RNAs. Comprising an average of 130–140
nucleotides, H/ACA RNAs conform to a consensus
5 0-hairpin-hinge-hairpin-tail-3 0 secondary structure, in
which the characteristic ACA trinucleotide is exactly
three residues from the 3 0 end (Figure 1). H/ACA RNAs
identify the w130 known mammalian pseudouridylation
sites by base-pairing to a few nucleotides flanking the
target uridines. Complementarity to the substrate RNAs
lies in the upper half of a bulge (pseudouridylation pocket)
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of one or both of the hairpins, placing the unpaired target
uridine at the bottom of a helix [7,8]. Pseudouridylation
is catalyzed by the pseudouridylase NAP57 (also known
as dyskerin, or Cbf5 in yeast and archaea), which is one of
the four H/ACA core proteins [9]. The small basic core
proteins, GAR1, NOP10 and NHP2 (L7Ae in archaea),
round out H/ACA RNPs. Except for GAR1, the core
proteins are essential for the structural integrity of
H/ACA RNPs [3].
The structures

The structure of the archaeal pseudouridylase Cbf5 has
been solved in complex with Nop10 alone [5,6] and with
Nop10 and Gar1 [4]. On the basis of structural and
sequence homology, pseudouridylases are classified into
five families called RluA, RsuA, TruA, TruB and TruD
[10]. Crystal structures of bacterial and/or archaeal
representatives of each family have been solved.

Cbf5 belongs to the TruB family of pseudouridylases,
which are specified by the Escherichia coli enzyme
responsible for modifying uridine 55 in all elongator
tRNAs. Unlike Cbf5, however, all other pseudouridylases
(including TruB) function as independent enzymes that
recognize and isomerize uridines without assistance from
other proteins or RNAs. The crystal structures of archaeal
Cbf5 therefore provide the first descriptions of a
pseudouridylase that functions in the context of a RNP
and that depends on a guide RNA for recognition of the
target site.
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The pseudouridylase (Cbf5)

Although the structures are derived from three different
archaea, Methanococcus jannaschii [5], Pyrococcus
furiosus [4] (Figure 1) and Pyrococcus abyssi [6], they
are in good agreement. Cbf5 contains a catalytic domain
that superimposes closely on those of TruB [11] and
the four other members of the pseudouridylase family
(Figure 1, green). The matching positions of a universally
conserved aspartate residue (Figure 1, arrow) and a few
key residues in the catalytic center suggest that all
pseudouridylases, RNA-guided or not, share a conserved
mode of catalysis. In comparison to Cbf5, the catalytic
domains of TruB and other pseudouridylases contain
additional segments that are important for binding the
substrate RNA. Apparently, Cbf5 can function without
these appendages because it associates with other
proteins and interacts indirectly with its substrates via
its H/ACA RNA.

In addition to its catalytic domain, Cbf5 contains a
C-terminal pseudouridylase archaeosine tRNA-guanine
transglycosylase (PUA) domain [12] (Figure 1, cyan),
which is larger and is enveloped by an N-terminal
extension (Figure 1, yellow) in comparison to that of the
eubacterial TruB enzyme. In archaeosine transglycosylase
(archaeosine is a guanine derivative specific to archaeal
tRNAs), this domain is important for recognizing the CCA
terminal residues of tRNA (the CCA residues are essential
for tRNAs to be charged with their amino acids).
Interestingly, the PUA domain in Cbf5 is similarly
perched for potential recognition of the defining ACA
trinucleotide at the 3 0 end of H/ACA RNAs.

The bracket (Nop10)

Nop10, a protein of 60 amino acids, lines the oblong
catalytic domain of Cbf5 with a random coil central
segment that separates its own N-terminal Zn2C-binding
and C-terminal a-helical domains (Figure 1, red).
Although Nop10 seems to be intrinsically disordered on
its own [13], it becomes structured on binding to Cbf5. This
tight interaction with Cbf5 might be important to freeze
the catalytic domain in the most favorable position for
catalysis and to extend the positive surface potential of
Cbf5 for binding the H/ACA and substrate RNAs [4–6].
In fact, Nop10, as well as its C-terminal a-helix alone,
promotes binding of substrate RNA in gel-shift assays
and is sufficient for reconstituting RNA-guided pseudouri-
dylase activity in the context of Cbf5 and L7Ae [6].

Nop10 also might be involved in docking of L7Ae to the
complex, as modeled by Rashid et al. [4] and demonstrated
for its mammalian counterpart NHP2 [14]. By mutating
one of the four Zn2C-coordinating cysteine residues, which
are conserved in archaeal but not eukaryal Nop10,
Manival et al. [6] have shown that Zn2C binding is not
required for RNP assembly and activity. Thus, Zn2C seems
to be important for the structural integrity of specifically
archaeal Nop10 (which must withstand challenging
temperatures).

The outsider (Gar1)

The crystal structure of Gar1 in the Gar1–Cbf5–Nop10
complex is the first structure of any Gar1 homolog to be
www.sciencedirect.com
solved and it shows that Gar1 belongs to the super-
family of reductase, isomerase and elongation factor
folds [4] (Figure 1, blue). Gar1 binds to one end of the
Cbf5 catalytic domain without contacting Nop10. This
observation is in good agreement with biochemical data
demonstrating that archaeal, yeast and mammalian
Gar1 interact independently with Cbf5 homologs
[14–17].

Although Gar1 has been ‘tied’ to the catalytic core by
crosslinking in mammalian H/ACA RNPs [14], it is
situated too far from the active-site aspartate to make
contact with this residue. The missing one-fourth of
archaeal Gar1 in the structure and/or the defining
(glycine/arginine)-rich N and C termini of eukaryal
GAR1 might account for this discrepancy. Interestingly,
the location of Gar1 in the complex might prove to be
identical to that of Naf1 in eukaryal H/ACA RNPs. Naf1,
which is required for the biogenesis of H/ACA RNPs,
shares homology with the domain of Gar1 that contacts
Cbf5 [18].
How do H/ACA and substrate RNAs bind this protein

complex?

The structure of the related TruB in association with its
substrate tRNA provided the basis for identifying the
probable RNA-binding surface in the complex [4,5].
Specifically, together with Nop10, the PUA and catalytic
domains of Cbf5 form a platform with a positively
charged surface potential that is ideal for binding RNA
(Figure 1, broken gray oval and line). Indeed, mutation
of two conserved basic and surface-exposed amino acids
in the catalytic domain abolishes binding between
archaeal H/ACA RNA and the Cbf5–Nop10 dimer [5].
Moreover, the PUA domain is essential for RNP
assembly and activity because (in the presence of
substrate RNA) it supports both processes, even when
added in trans [6].

By using the coordinates of the TruB–tRNA complex
and a previously solved complex of L7Ae and guide RNA,
Rashid et al. [4] have modeled a fully assembled H/ACA
RNP hybridized to a substrate RNA. The three-junction
helix, formed by base-pairing between the substrate RNA
and the pseudouridylation pocket, and by the upper stem
of the guide RNA, folds into an extended structure that
places the target uridine next to the catalytic aspartate.
The tip of the H/ACA RNA hairpin extends beyond
Nop10, where it binds L7Ae, whereas the 3 0 ACA and
both ends of the substrate RNA point beyond the PUA
domain. Therefore, consistent with all studies, H/ACA
RNPs seem to be bipartite – that is, one side protein, one
side RNA. This separation between RNA and protein in
H/ACA RNPs contrasts with the situation in other RNPs;
for example, in the large ribosomal subunit, proteins
adorn the surface all over the RNA core and send
extensions deep into the interior [19]. For the H/ACA
RNPs, this pasting of RNAs to one side of the core protein
complex seems to be exquisitely suited to accommodate
the w100 different but related H/ACA RNAs and their
various substrate RNAs. It will be interesting to see
whether C/D RNPs – the other main class of small
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Box 1. Dyskeratosis congenita

Phenotype
Dyskeratosis congenita is a rare syndrome of bone marrow failure

that is inherited in one of the three following modes (listed in

descending order of frequency and severity): X-linked, autosomal

recessive and autosomal dominant. Individuals affected with

dyskeratosis congenita are mostly identified in their first decade of

life by the triad of nail dystrophy, abnormal skin pigmentation and

mucosal leucoplakia, but they often die in their third decade owing

to bone marrow failure. Affected individuals are also predisposed

to malignancies of rapidly dividing tissues and other

complications [20].

Molecular pathogenesis

X-linked dyskeratosis congenita is caused by mutations in NAP57, the

pseudouridylase of H/ACA ribonucleoproteins (RNPs) [21]. The

autosomal dominant form of dyskeratosis congenita is caused by

mutations in telomerase RNA and reverse transcriptase [22,23],

whereas the gene or genes responsible for the autosomal recessive

form remain to be identified. Impaired maintenance of telomeres

could explain both X-linked and autosomal dominant dyskeratosis

congenita because telomerase RNA also forms an H/ACA RNP. Such a

mechanism is supported by the observation of shortened telomeres

in individuals with dyskeratosis congenita. Do mutations in NAP57,

therefore, specifically affect its interaction with telomerase RNA but

not with the other 100-plus H/ACA RNAs? The answer seems to be no

because the dyskeratosis congenita phenotype can be reproduced by

mutations in NAP57 that, in the absence of telomere defects, impair

ribosome biogenesis (and possibly precursor mRNA splicing)

through reduced pseudouridylation of RNA [24,25].
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nucleolar RNPs – adopt a similar mechanism for binding
their many C/D RNAs.

The mutation cluster

A most interesting result of these structural analyses is
the observation that the N terminus of Cbf5 wraps around
its C-terminal PUA domain, thereby generating a single
hotspot for mutations identified in the Cbf5 ortholog
NAP57 of individuals affected with dyskeratosis congenita
[4–6] (Figure 1, arrowheads; Box 1). This hotspot was
dramatically highlighted by modeling the structure of
NAP57 (residues 35–359 out of 514) based on the structure
of archaeal Cbf5 and by mapping the dyskeratosis
congenita mutations onto the resultant model [4].

This tight spatial clustering of mutations that are
distant from each other in the linear sequence suggests
that most dyskeratosis congenita mutations affect the
same function of NAP57. The location of the mutations
in and near the PUA domain indicates that they might
have an effect on H/ACA RNA binding. Alternatively – and
more intriguingly – the exposed surface defined by the
mutation hotspot is strategically situated at one end of
the complex for interaction with a non-core component
of the H/ACA RNP – for example, a telomerase-specific
protein or an H/ACA RNP assembly factor. If so,
interference with such an interaction would explain the
specific effect of dyskeratosis congenita mutations on only
a few select H/ACA RNPs.

Concluding remarks

As outlined here, this exciting flurry of archaeal H/ACA
protein structures has yielded considerable insight into
www.sciencedirect.com
many aspects of H/ACA RNP biology. However, several
important questions remain. In terms of human H/ACA
RNPs, how will the missing one-third and one-half of
NAP57 and GAR1, respectively, fit into the RNP and how
will they affect the overall structure? Given the often
conserved nature of the dyskeratosis congenita missense
mutations, what is their molecular impact? The answers
will be known only once the structure of the human
H/ACA RNP core has been solved.

Ultimately, the crystal structure of the whole RNP,
including the H/ACA RNA and substrate RNA, will be
required. Meanwhile, the solution structure of one of the
H/ACA RNA hairpins might aid in modeling the complete
RNP [13]. The full RNA protein complex might also
provide insight into how the base-pairing between the
guide and substrate RNAs is released after pseudouridy-
lation. As such, the structure of mammalian holo-H/ACA
RNPs will answer both fundamental and clinically
relevant questions.
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