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Modern fluorescent proteins and imaging technologies to study
gene expression, nuclear localization, and dynamics
Bin Wua, Kiryl D Piatkevicha, Timothée Lionnet, Robert H Singer and
Vladislav V Verkhusha
Recent developments in reagent design can address problems

in single cells that were not previously approachable. We have

attempted to foresee what will become possible, and the sorts

of biological problems that become tractable with these novel

reagents. We have focused on the novel fluorescent proteins

that allow convenient multiplexing, and provide for a time-

dependent analysis of events in single cells. Methods for

fluorescently labeling specific molecules, including

endogenously expressed proteins and mRNA have progressed

and are now commonly used in a variety of organisms. Finally,

sensitive microscopic methods have become more routine

practice. This article emphasizes that the time is right to

coordinate these approaches for a new initiative on single cell

imaging of biological molecules.
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Introduction
Recent advances in fluorescent probes with red-shifted

spectra resulted in creation of novel red fluorescent

proteins (RFPs) and RFP-based biosensors with

enhanced spectral and biochemical characteristics.

Reduced autofluorescence, low light scattering, and mini-

mal absorbance at the longer wavelengths make RFPs

superior probes for cell, tissue, and whole-body imaging

[1]. Moreover, introduction of novel RFPs enables multi-

color labeling, intravital imaging, super-resolution micro-

scopy, and provides new pairs for FRET techniques. In

this review we focus on novel monomeric RFPs and their
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application for studying gene expression, nuclear localiz-

ation, and dynamics using advanced imaging. For proper-

ties and applications of green fluorescent proteins (GFPs)

and other blue, cyan and yellow fluorescent proteins

(FPs) we refer to recent reviews [2,3].

Modern red fluorescent proteins
Modern RFPs, with emission maxima exceeding 560 nm,

can be divided into five main groups: conventional and

split orange, red and far-red FPs, RFPs with a large Stokes

shift (LSS-RFPs), fluorescent timers (FTs), and photo-

activatable RFPs (PA-RFPs) (Figure 1). We list the

currently recommended FPs of each class and their

key spectroscopic properties in Table 1.

Conventional red fluorescent proteins
Orange and red FPs

The palette of conventional RFPs have been enriched by

the number of enhanced monomeric orange FPs (OFPs)

and RFPs for DNA, RNA, and protein labeling in living

cells. The novel orange mKOk [4] and red mRuby [5]

FPs are the brightest among the currently available mono-

meric FPs. High extinction coefficients, pH-stability and

extended Stokes shift (47 nm) in case of mRuby make

these RFPs attractive as FRET acceptors for yellow

donors. However, mKOk and mRuby are less photostable

than mCherry under arc lamp illumination. TagRFP-T

and mOrange2, which preserve spectral properties of their

precursors TagRFP and mOrange, are attractive for long-

term imaging owing to their photostability both under arc

lamp and laser illumination, [6]. The improved version of

mKate, mKate2, combines brightness and photostability

with rapid maturation [7]. Transgenic expression of

mKate2 in Xenopus embryos revealed reduced cytotoxicity

even at high concentration in the cells. Another mKate

derivative, split-mLumin, is a novel red bimolecular fluor-

escent complementation system that shows improved per-

formance in mammalian cells at 37 8C [8].

Far-red FPs

The development of monomeric RFPs with emission

beyond 650 nm has recently been achieved. Far-red

FPs can be preferable for labeling cellular proteins in

strong autofluorescence conditions and for multicolor

imaging with OFPs. The TagRFP657 protein, character-

ized by absorption/emission at 611/657 nm, exhibits low

cytotoxicity, high pH-stability and photostability and can

be efficiently excited by the standard 633–640 nm red

lasers [9]. mNeptune, exhibiting absorption/emission at
www.sciencedirect.com
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Figure 1
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Major groups of RFPs, their photophysical properties, and potential applications are shown. (a) Conventional and split RFPs. Two non-fluorescent

fragments of split FP when brought together form a complete FP barrel. (b) Large Stokes shift RFPs. Excited state proton transfer was shown to be

responsible for large Stokes shift. (c) Fluorescent timers. (d) Three types of photoactivatable RFPs. Dark-to-red PAFPs irreversably convert from non-

fluorescent state to the fluorescent state under violet light (photoactivation). Green-to-red PAFPs irreversably convert from green fluorescent state to

red fluorescent state under violet light (photoconvertion). Red-to-dark photoswitchable FPs reversably convert from non-fluorescent state to the

fluorescent state under different lights (photoswitching).
600/650 nm, outperforms TagRFP657 in brightness in

mammalian cells [10].

Large Stokes shift fluorescent proteins
Recently, several orange and red FPs with large Stokes

shifts (LSS; a difference between excitation and emission

maxima more than 100 nm) have been developed on the

basis of conventional RFPs [11�]. An excited-state proton

transfer (ESPT) occurring upon excitation of a neutral

chromophore was shown to be responsible for the LSS

observed in these proteins (Figure 1b). The LSS-RFPs

are beneficial for imaging under autofluorescence con-

ditions since autofluorescence has a shorter Stokes shift.

Moreover, LSS-FPs can be efficiently used with regular

FPs for multicolor imaging with a single excitation wave-

length and as an additional red color for conventional

RFPs. LSSmKate2, optimized for expression in mamma-

lian cells, is recommended owing to its photostability, pH

insensitivity and excellent fusion property [12].

Fluorescent timers (FT)
A fluorescent timer changes its color with time owing to a

chemical conversion of its chromophore (Figure 1c) [13].

The predictable time course of fluorescence transition

allows a quantitative analysis of temporal and spatial

molecular events based on the ratio between fluorescence
www.sciencedirect.com 
intensities of the two forms. The first monomeric FTs

that exhibited distinctive fast, medium, and slow blue-to-

red chromophore maturation rates (from around 10 min to

28 h) were developed on the basis of mCherry [14]. The

blue and red forms of FTs are bright either alone in

protein fusions or together with green FPs for multicolor

microscopy. However, noticeable blue-to-red photoacti-

vation of FTs under intense illumination by blue light

may complicate their long-term imaging, but still allows

efficient application for flow cytometry. Another mono-

meric FT named Kusabira Green Orange (mK-GO)

changes fluorescence from green to orange. The ratio

of orange per green fluorescence determined by in vitro
translation linearly increased and reached a plateau at

approximately 10 h [15].

Photoactivatable red fluorescent proteins
(PARFP)
PARFPs change fluorescent properties upon irradiation

with a certain wavelength. All PARFPs can be divided

into the three main groups by color transitions upon

illumination (Figure 1d).

Dark-to-red photoactivatable FPs

PAmCherrys [16] and PATagRFP [17��] are non-fluor-

escent in the dark (non-activated) state, but easily
Current Opinion in Cell Biology 2011, 23:310–317
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Table 1

Properties of the modern monomeric red fluorescent proteins

Protein 
Exmax , 

nm 
Emmax , 

nm 
ε, 

М-1 •см-1
QY 

Bright
nessa 

pKa 
Additional 
parameter 

Ref 

  

Red fluorescent proteins   

Timeb, h  
mKOκ 551 563 105,000 0.61 64 4.2 1.8 4 

mOrange2 549 565 58,000 0.60 35 6.5 4.5 6 
TagRFP-T 555 584 81,000 0.41 33 4.6 1.7 6 

mRuby 558 605 112,000 0.35 39 5 2.8 5 
LSSmKate2 460 605 26,000 0.17 4.5 2.7 2.5 12 

mLumin 587 621 70,000 0.46 32 4.7 1.3 8 
mKate2 588 633 62,500 0.40 25 5.4 <0.33 7 

mNeptune 600 650 67,000 0.20 13 5.4 ND 10 
TagRFP657 611 657 34,000 0.10 3.4 5.0 2.0 9 

   

Fluorescent times   

 Timec, h  

Slow-FT 
402 465 33,400 0.35 12 2.6 9.8 

14 
583 604 84,200 0.05 4 4.6 28 

Medium-FT 
401 464 44,800 0.41 18 2.7 1.2 

14 
579 600 73,100 0.08 6 4.7 3.9 

Fast-FT 
403 466 49,700 0.30 15 2.8 0.25 

14 
583 606 75,300 0.09 7 4.1 7.1 

mK-GO 
500 509 35,900 ND ND 6.0 

10 15 
548 561 42,000 ND ND 4.8 

   

Photoactivatable red fluorescent proteins   

 Conditiond  

PAmCherry 564 594 18,000 0.46 8 6.3 Violet 16 
PATagRFP 562 595 66,000 0.38 25 5.3 Violet 17 

Dendra2 
490 507 45,000 0.50 22 6.6 Matures to green 

18 
553 573 35,000 0.55 19 6.9 Violet 

mEos2 
506 519 56,000 0.84 47 5.6 Matures to green 

19 
573 584 46,000 0.66 30 6.4 Violet 

mKikGR 
505 515 49,000 0.69 34 ND Matures to green 

20 
580 591 28,000 0.63 18 ND Violet 

mIrisFP 
486 516 47,000 0.54 25 5.4  Violet 

21 
546 578 33,000 0.59 19 7.6 Violet Cyan 

rsTagRFP 
440 585 15,300 0.001 0.02 ND Orange 

22 
567 585 36,800 0.11 4 6.6 Blue 

Exmax is the excitation maximum. Emmax is the emission maximum. e is the molar extinction coefficient. QY is the quantum yield.
aFluorescent protein brightness is determined as a product of quantum yield and molar extinction coefficient, divided by 1000.
bMaturation half time.
cCharacteristic time for the color transition.
dCondition for the chromophore formation: spontaneous maturation or photoactivation (PAmCherry, PATagRFP), photoconversion (Dendra2,

mEos2, mKikGR, mIrisFP), or photoswitching (mIrisFP, rsTagRFP).
undergo irreversible activation under violet light irradia-

tion of relatively low intensity. High photoactivation

contrast and photostable red forms make long-term

visualization of the activated proteins possible. However,

PATagRFP significantly outperforms PAmCherry in pH

stability, brightness, and photostability (Table 1).

Green-to-red photoswitchable FPs

All members of this group initially mature to a green-

emitting state, which can be irreversably photoconverted

into the red fluorescent form upon violet light illumina-
Current Opinion in Cell Biology 2011, 23:310–317 
tion. The most promising variants of green-to-red PAFPs,

which are Dendra2 [18], mEos2 [19], and mKikGR [20],

are characterized by high brightness and photostabilities

of both fluorescent forms, efficient maturation at 37 8C.

Additionally, excellent performance in difficult fusions

has already allowed their succesful application for a

variety of cell biology problems. It was shown that

mKikGR can be also activated by soft radiation of IR

laser. A remarkable protein mIrisFP combines properties

of photoactivatable and photoswitchable FPs [21]. It

undergoes irreversible photoactivation from green to
www.sciencedirect.com
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Figure 2
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Advanced microscopy and spectroscopy techniques for imaging gene expression, nuclear localization, and dynamics. (a) Super-resolution

microscopy: The first class of super-resolution microscopy exploits the nonlinear optics to reduce the illumination spot size in technique such as

stimulated emission depletion (STED) microscopy, reversible saturable optical fluorescence transition (RESOLFT) microscopy [47], and saturated

structured illumination microscopy (SSIM) [48]. The second class involves repeated activation and bleaching of sparsely selected fluorescent molecule

and subsequently accurate localization to build up the high resolution images, such as photoactivation localization microscopy (PALM) and its close

variants STORM and fPALM [25�]. Single particle tracking PALM (sptPALM) allows tracking of high density molecules in live cell [29]. (b) MPM:

Multiphoton microscopy [49] offers attractive feature over traditional confocal and widefield microscopy for live cell and thick tissue imaging for its

increased penetration depth owing to less light scattering, reduced autofluorescence and photobleaching, minimal absorbance of hemoglobin and

skin melanin at the longer wavelengths, and its optical sectioning effect. Development of RFPs with large Stokes shift and far-red spectrum enables

multicolor in vivo MPM with subcellular resolution [12]. (c) FFS: Fluorescence fluctuation spectroscopy includes a variety of techniques that utilize the

fluctuating fluorescence signal when molecules randomly diffuse through a subfemtoliter observation volume created by confocal or two-photon

microscope. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) [31,50] exploit the temporal decay

of correlation/crosscorrelation of the signal to extract the concentration, mobility, and the interaction information. Brightness analysis studies the

amplitude of the fluctuation and provides stoichiometry and affinity information of interactions [33]. Image correlation spectroscopy (ICS) and cross

correlation spectroscopy (ICCS) [32] measures spatially fluctuating signal from raster-scan laser confocal/two-photon microscopy. They are powerful

tools to measure the clustering and dynamics of membrane proteins and receptors. (d) FRAP, FLIP, Photoactivation, Photoconversion: Molecules in a

region of interest are optically highlighted by photobleaching or photoactivation [28]. As the highlighted molecule exchanges with the surrounding

unhighlighted ones owing to diffusion and binding, the fluorescence in the ROI is monitored to obtain the kinetic information about mobility and

interaction. (e) FRET: Fluorescence resonance energy transfer measures the effect of excited-state energy transfer from donor to an adjacent acceptor

protein. FRET provides evidence for direct interaction since the energy transfer occurs only when donor and acceptor are within 10 nm of each other.

Compared with FFS, FRET is independent of the mobility of the molecule under investigation. FRET can be measured simply by acceptor bleaching or

www.sciencedirect.com Current Opinion in Cell Biology 2011, 23:310–317
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red fluorescent form under violet light, moreover the

green and red fluorescent forms can be reversibly

switched between dark and fluorescent states by light.

Reversibly photoswitchable RFPs

A small class of photoswitchable RFPs is represented by

rsTagRFP [22��]. Initially rsTagRFP matures to a red

fluorescent form. However, illumination with blue and

yellow light switches the protein into a red fluorescent

state or nonfluorescent state, respectively. Switching can

be repeated hundreds of times reaching a 20-fold ratio of

fluorescence intensities. Thus, rsTagRFP spectral prop-

erties are beneficial for sensitive imaging of the switched

form.

We have briefly described enhanced versions of FPs from

each group that can be used to study problems in cell

biology. Following are some applications of these novel

RFPs to study gene expression, nuclear localization, and

dynamics using advanced imaging techniques.

Microscopy techniques utilizing fluorescent
proteins
A variety of microscopy/spectroscopy techniques have

been developed in the past decades, which are briefly

summarized in Figure 2. Together with FPs, these

methods provide key information about cellular function

that is otherwise unattainable.

Measuring molecular localization

The localization of molecules within the cell can be

followed by 4D microscopy. Time-lapse imaging of FP

labeled proteins or mRNAs provides information on

their localization and translocation in living cells

[23,24]. A new set of methods, termed super-resolution

microscopy, have broken the diffraction limit of con-

ventional light microscopy (Figure 2a) [25�]. One form

of super-resolution  imaging, photoactivation localization

microscopy (PALM), involves repeatedly activation and

bleaching of sparsely selected fluorescent molecules

followed by accurate localization. Introduction of novel

photoactivatable RFPs enables multicolor PALM of

fixed and living cells [16]. Super-registration microscopy

allows co-registration of two spectrally distinct mol-

ecules with 20 ms temporal and 26 nm spatial precision

in live cells by exploiting a natural cellular marker such

as a nuclear pore [26]. A transition from cellular imaging
ratiometric imaging. However ratiometric imaging is not appropriate for gen

concentration of donor and acceptor. Fluorescence lifetime imaging micros

applied to detect protein interactions. (f) BiFC [38]: In bimolecular fluoresce

fused to two interacting molecules. The two segments remain dark until the

However, owing to the maturation of fluorophore, there is delay between the

formation of bimolecular complex is irreversible, which complicates the phy

study protein–protein interaction. (g) Super-registration microscopy: Imaging 

resolution is challenging. The super-registration microscopy [26] exploits a n

beyond the diffraction limit. It has been applied to detect a single mRNA pa

limited to the case that the cellular marker is relative immobile during the tim

Current Opinion in Cell Biology 2011, 23:310–317 
to tissue imaging also become possible with intravital

multiphoton microscopy with subcellular resolution

[12].

Measuring molecular mobility

The mobility of molecules can be measured by high-

lighting a subset of molecules in a small region of interest.

This group of techniques includes fluorescence recovery

after photobleaching (FRAP), its variation fluorescence

loss in photobleaching (FLIP) and reversibly or irrever-

sibly photoactivation of FPs [27,28]. Photoactivation

overcomes some limitation of FRAP and FLIP, such as

phototoxicity and complex photophysics of some FPs. It

enables tracking fast protein movement [28] or even dual-

color single particle tracking PALM in live cells [17��,29].

With proper mathematical modeling, these measure-

ments also yield information about binding with the

subcellular structure [30�]. Alternative approaches to

measure mobility include fluorescence correlation spec-

troscopy (FCS) [31] and image correlation spectroscopy

(ICS) [32]. FCS is able to measure fast dynamics ranging

from submicrosecond to second in a specific location. ICS

is especially suitable for slower events such as receptors

moving on the plasma membrane.

Detecting molecular interactions

An effective way to measure protein–protein interactions

in living cells is fluorescence resonance energy transfer

(FRET) (reviewed in [33]). Intensity-based ratiometric

FRET imaging is easy to implement and widely used to

measure fast signaling events of biosensors. Using

recently developed photoswitchable rsTagRFP as accep-

tor and YFP as donor, FRET can be turned on and off,

offering an internal control for photochromic FRET

(pcFRET) [22��]. FRET, although powerful, suffers from

the high false-negative rate to measure protein–protein

interactions since it is distance dependent. An alternative

approach that is not limited by distance is fluorescence

fluctuation spectroscopy (FFS). Brightness analysis in

FFS provides straightforward measurements of protein

homo-oligomerization [34]. By labeling proteins with

different colors, FCCS and ICCS are able to detect

interacting species [32,35]. The recently developed het-

ero-species partition analysis (HSP) utilizes dual-color

brightness to measure stoichiometry as well as generate

binding curves in living cells [36]. Large Stokes shift

proteins provide unique advantages for multicolor FFS
eral purpose protein interaction assays since it depends on relative

copy (FLIM) based FRET assay is not limited by this and is commonly

nce complementation experiment, an FP is split into two segments and

 interacting partners bring them together and form a complete FP.

 interaction and the appearance of fluorescence. In certain scenario, the

siological process understudy. BiFC has been successfully applied to

two interacting molecules in different color with high spatial and temporal

atural cellular marker to register positions in different detection channels

rticle passing through a single nuclear pore. Currently, the technique is

e of imaging.

www.sciencedirect.com
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Figure 3
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mRNA

RNA binding si te a rray
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The gene expression in eukaryotic cells involves many steps and numerous components. First transcription requires close cooperation between

transcription factor, corregulator, mediator, chromatin remodeler, histone covalent modifier, and basal transcription machinery. After transcription, the

mRNA is again subjected to post-transcription modification, export, localization, translation, and degradation. Each individual step can be visualized by

tagging corresponding factors with different FPs. Quantitative microscopy techniques allow one to extract dynamic information as reviewed in the text.
experiments since they allow efficient excitation of

multiple fluorophores with a single wavelength, eliminat-

ing the complications of overlapping lasers and FRET

between protein pairs [37�]. Bimolecular fluorescence

complementation (BiFC) [38] represents one of the

newly developed approaches for visualizing protein–
protein interactions. The recently introduced split-mLu-

min [8] allows simultaneously three-color imaging with a

Cerulean and Venus based BiFC system in a single cell.

Imaging gene expression
Gene expression in eukaryotic cells involves many steps

and numerous components (Figure 2) [39��,40]. Bio-

chemical studies have identified most players and

detailed the enzymatic nature of the process. Various

hues of FPs allow multicolor labeling of DNA, RNA,

and protein factors involved in gene expression. In

addition, novel spectral properties such as photoswitching

or fluorescent timers open the way for pulse-chase exper-

iments at a single cell level. Currently it is possible to

image three red colors (simultaneous imaging mOrange2

and TagRFP657, and asynchronous imaging of LSS-

mKate2). Combination of RFPs with conventional

blue/green and large Stokes shift GFPs could image as

many as six colors in a single cell.

In Figure 3, we have shown schematically the process of

gene expression and how each step can be visualized.

First, a specific gene locus on a chromosome can be

tagged with DNA binding protein fused to FP by insert-

ing recombinant DNA sequences carrying specific bind-

ing sites (such as Lac operator/repressor). Additionally,

multiple mRNAs can be visualized in a single cell by

incorporating a specific sequence recognized by an RNA

binding protein labeled by FPs [41,42]. When the gene is

transcribed, multiple nascent transcripts accumulate and

illuminate the transcription site.
www.sciencedirect.com 
In order to investigate mechanistic details, various factors

that participate or regulate transcription can be labeled.

Nuclear receptors (NR) are transcription factors that

regulate gene expression in a ligand-dependent manner.

Binding of agonist ligand triggers conformation changes

of NR that leads to the recruitment of coactivators. Dual-

color FFS has been successfully applied to study the

concentration, mobility, and interactions of NR and its

interaction with coactivators [36]. The transcription

dynamics are measured by applying FRAP or photoacti-

vation to the transcription site. In this way, the residence

time of various factors and dynamics of RNA polymerase

has been measured [43�,44]. It reveals surprisingly

dynamic behavior and short binding times for most factors

at the transcription site except the polymerase, which

elongates the transcript. Novel photoswitching FPs will

allow us to follow transcription initiation, elongation, and

termination at the same time. MS2 labeled mRNA was

tracked in the nucleus and showed that Brownian diffu-

sion dictates the transport [45]. By labeling the nuclear

pore complex and applying super-registration micro-

scopy, we and others have observed mRNA going through

a single nuclear pore [26,46]. Finally, the mRNA reaches

cytoplasm and is translated. Fluorescent protein is com-

monly used as reporter for gene activity. For example,

gene product tagged with fluorescent timers enables

monitoring gene expression by conventional microscopy

or flow cytometry [4,14].

Conclusions
We are entering a new era of designing probes. These

probes have the essential features required for live ima-

ging in cells and tissues: low autofluorescence in the

emission spectrum, non-toxic excitation wavelengths

amenable to intravital imaging, and timer aspects for

following molecules as a function of the biological pro-

cesses that govern them. The novel reagents can provide
Current Opinion in Cell Biology 2011, 23:310–317
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a mix-and-match smorgasbord for an increasing complex-

ity of biological processes to investigate. For instance,

illuminating with a single excitation wavelength can now

provide four colors of labeled species. The future is bright

for researchers searching for biological gold under this

rainbow.
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