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Oscillations in patterns of expression of a large fraction of yeast
genes are associatedwith the “metabolic cycle,”usually seenonly in
prestarved, continuous cultures of yeast. We used FISH of mRNA in
individual cells to test the hypothesis that these oscillations happen
in single cells drawn from unsynchronized cultures growing expo-
nentially in chemostats. Gene-expression data from synchronized
cultureswereused topredict coincident appearanceofmRNAs from
pairs of genes in the unsynchronized cells. Quantitative analysis of
the FISH results shows that individual unsynchronized cells growing
slowly because of glucose limitation or phosphate limitation show
the predicted oscillations. We conclude that the yeast metabolic
cycle is an intrinsic property of yeast metabolism and does not
depend on either synchronization or external limitation of growth
by the carbon source.
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Some essential reactions and even entire pathways in cellular
metabolism are in fundamental chemical conflict with each

other. It has long been supposed that metabolic incompatibilities
of this kind underlie the spatial segregation of different metabolic
functions into organelles bound by membranes, such as chlor-
oplasts and mitochondria. However, spatial segregation is not the
only way found in evolution that addresses metabolic incom-
patibilities. Temporal segregation and combinations of temporal
and physical separation are found among the nitrogen-fixing
bacteria, and plants naturally separate photosynthetic activities
from respiratory activities according to the daily light cycle.
The phenomenon now known as “metabolic cycling” was first

described in dense chemostat cultures of budding yeast, Saccha-
romyces cerevisiae, about 50 years ago (1–3). Highly regular oscil-
lations in the levels of dissolvedoxygen canbeobserved conveniently
in chemostats that have been glucose starved and re-fed. These
oscillations reflectperiodic consumptionofoxygenby thepopulation
and can persist indefinitely as long as the chemostat is fed. Recently,
two groups (4, 5) conducted genome-wide gene-expression studies
on such synchronized populations and found that a substantial
fractionof all yeast genesexhibitperiodic expression that is in rhythm
with the oscillations in dissolved oxygen. Analysis of the expression
patterns suggested that in such metabolic-cycling populations there
is a temporal separation in the expression of genes involved in oxi-
dative metabolism (e.g., peroxisomal functions) from that of genes
encoding proteins associated with growth in cell mass (e.g., riboso-
mal proteins). The number of periodically expressed genes is much
larger than that observed in synchronization of the classically defined
cell-division cycle (using mating factors or cell-division-cycle
mutants). The connection between the metabolic cycle and the cell-
division cycle is still not entirely clear.
An inference, made by both groups, that cycling might be con-

nected with the sensitivity of replicatingDNA to oxidative damage
caused by reactive oxygen species produced by some kinds of
oxidative metabolism (e.g., β-oxidation of fatty acids) was fortified
by subsequent observation of increased mutation rates in meta-

bolic-cycling mutants that have lost the ability to restrict DNA
replication to particular “safe” phases of the metabolic cycle (6).
This explanation would conform with the idea that, in organisms
with a metabolism adapted to earth’s ancient reducing atmos-
phere, metabolic cycling evolved along with respiratory metabo-
lism as the levels of oxygen in the atmosphere rose to their current
levels. This reasoning assumes that metabolic cycling and the
attendant periodic expression of somany yeast genes is an intrinsic
property of yeast metabolism. However, nothing in these experi-
ments could distinguish this situation from the possibility that the
phenomenon is merely a consequence of the special conditions
that produce synchrony.
A parallel investigation (7, 8) of genome-wide gene expression

as a function of growth rate in unsynchronized chemostat cultures
of the same yeast strain showed a remarkably similar division of
genes on the basis of correlation of their expression levels with
growth rate. Specifically, the genes whose expression was found to
be negatively correlated with growth rate (i.e., genes expressed
more strongly in slower growth conditions) largely overlappedwith
those associated with the oxidative phase of the metabolic cycle in
synchronized populations.
The simplest way to reconcile this coincidence in gene-expression

patterns is to suppose that all yeast cells, even those that are not in a
synchronized population, display a metabolic cycle; that is, that
metabolic cycling is an intrinsic property of yeast metabolism. Over
themany years of study ofmetabolic cycling in one form or another,
aspects of metabolic oscillations have been observed that suggested
an intrinsic cycle (1–3, 9) but have not provided definitive evidence
of a cell-autonomous cycle in individual unsynchronized cells.
In this paper we present the results of FISH of individual

mRNAs in single cells (10), which we carried out to test the
hypothesis that individual cells in unsynchronized cultures display
gene-expression profiles associated with metabolic cycling.
We selected pairs of periodically expressed genes that, according

to the expression data frommetabolically synchronized cultures (4),
should be expressed coincidentally and thus have significant num-
bers of labeled mRNA molecules for both genes in the same indi-
vidual cells of an unsynchronized population. We also chose other
pairs of periodically expressed genes in synchronized cells that
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shouldbeexpected tohave significantnumbersofmRNAmolecules
only in different individual cells of an unsynchronized population.
Quantitative analysis of the FISH data shows excellent con-

cordance with the predictions, indicating that metabolic cycling
occurs in the cells of unsynchronized yeast populations. Further,
FISH experiments using phosphate as the limiting nutrient show
that themetabolic cycling in unsynchronized cells does not depend
on carbon limitation.

Results
Cyclical expression (whether caused by the cell-division cycle, the
metabolic cycle, or any other regular cycle) can be observed only in
suitably synchronized populations if conventional measures of
gene expression are used. However, single-cell methods have the
potential to measure cyclical expression in unsynchronized pop-
ulations, because individual cycling cells in an unsynchronized
population are equivalent to cells drawn at random points in time
from a synchronized population. Only if two genes are expressed
coincidentally in the cycle will theirmRNAs appear together in the
same individual cell (Fig. 1). This principle makes it possible to
predict which pairs of genes should be found coincidentally in the
same individual cell from the patterns of gene expression in
synchronized cultures. Thus we predict the following:
First, only a fraction of the individual cells from an unsynchron-

ized population should contain significant numbers of mRNA
copies from any gene chosen on the basis of its robust cyclical ex-
pression in synchronized populations. (Most of the individual cells
in an unsynchronized population should be in phases of the cycle in
which such genes are expressed weakly, if at all.)
Second, individual cells from unsynchronized populations often

should contain significant numbers of themRNAs of both of a pair
of genes whose expression is coincident in the metabolic cycle of
synchronized cells.
Third, individual cells from unsynchronized populations should

contain significant numbers of themRNAs of one or the other, but
not both, of a pair of genes whose expression peaks in different
phases of the metabolic cycle in synchronized cells.
We required a quantitative method for measuring gene ex-

pression in individual yeast cells. To this end, the multicolor FISH
method (11) served us very well. In this method, single mRNAs
appear as diffraction-limited spots within cells, as thoroughly
documented previously (12). We made some adaptations and
improvements, mainly to deal with the very low levels of gene
expression we encountered. In the end, some improvements in the
algorithms for automated analysis of the images were required to
produce the primary useful data, namely the number of mRNA
molecules in each cell corresponding to each of a pair of genes.
We used chemostats as a source of unsynchronized, exponen-

tially growing yeast cells. We chose a slow growth rate because the

distinctions in gene expression between the genes associated with
different phases of the metabolic cycle are expected to increase at
lower growth rates (8). All cultures were grown in a defined
medium at a dilution rate of 0.1 volumes per hour, corresponding
to a doubling time of about 7 h. We used both glucose-limited and
phosphate-limited chemostats under conditions identical to those
described in ref.8. Dissolved oxygen was monitored continuously
to verify that the cultures we used showed no detectable syn-
chronous metabolic cycling (Fig. S1).
Discrete data collected from individual unsynchronized cells are

fundamentally different from continuous data collected from syn-
chronized cell populations (Methods and ref. 13). Therefore we
adopted an analytical framework to compare statistically coincident
expression in metabolically synchronized cultures and unsynchron-
ized cells. We measured the Pearson correlation of each gene pair
using the entire data set. To interpret these single-cell correlation
coefficients better, we calculated the range of values that the cor-
relation coefficient can assume given our discrete, single-cell data.
This range is truncated relative to the full range that can beobtained
using continuous data from synchronized cultures, partly because so
many cells contain no signal for either gene. We also show an
alternate measure of coincidence that consists of the full data with
the zero-signal cells removed. Thefinal, key stepwas to compare the
single-cell correlations with those of Tu et al. (4) by calculating the
Pearson correlation between them (correlation-of-correlations in
Tables 1–3). A positive outcome in this test indicates that the cor-
relations are ordered the same way in unsynchronized single cells
and synchronized cultures.
We used the time-series DNAmicroarray-based gene-expression

data from synchronized cultures [metabolic cycle (4, 5, 14) and cell
divisioncycle (15, 16)] to choosepairsof genes forwhichweexpected
coincident expression, or the lack of it, in unsynchronized cells. In
addition, we prioritized our selections based on relatively high
abundance of mRNAs according to several genome-wide studies
using microarrays (17–19) or high-capacity sequencing (20). Where
possible, we also favored genes whosemRNAs had been reported to
have relatively shorthalf-lives (TableS1).Probe sequencedesignand
details are given in Dataset S1.
We used FISH to assess quantitatively the mRNA content in

individual cells from slowly growing unsynchronized cultures.

Analysis of Coincident Expression Based on the Classical Cell-Division
Cycle. As a proof of concept for analytical methods as well as the
technology, we studied expression of four genes (MCD1, POL30,
CLB2, and SUR7) whose periodic expression during the yeast cell-
division cycle that operates in every growing cell is well established.
MCD1 encodes a cohesin subunit whose mRNA abundance peaks
during the S phase; POL30 encodes PCNA, whose mRNA abun-
dance also peaks during S phase; CLB2 encodes a B-type cyclin
whose mRNA peaks during G2 and M; and SUR7 encodes a
plasma membrane protein whose mRNA abundance also peaks
during G2 and M.
Our expectation in cells fromanunsynchronized populationwas

that we frequently should find cells withmRNA fromneither gene,
frequently should find mRNAs in the same cell for using FISH
probes for MCD1 and POL30 (the two S-phase genes) and for
CLB2 and SUR7 (the two G2/M genes), but only rarely, if ever,
should find mRNAs in the same cell using pairs of probes such as
CLB2 and POL30 or SUR7 and POL30 (i.e., one S-phase gene and
one G2/M-phase gene).
Fig. 2 shows the results with one pair (MCD1, POL30) for which

coexpression was expected and another (SUR7, POL30) for which
it was not. The figure summarizes data that include mRNA counts
from two experiments for each pair. Hybridizations using probe
pairs labeled with one or another cyanine (Cy) dye (dye-swaps)
give equivalent results. (A third control gene labeled with Cy5
typically appears in >95% of cells; Fig. S2). In each case an image
of a few selected cells is shown, along with a 2D histogram of the
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Fig. 1. Principle of the FISH assay. (A) mRNA abundance (vertical axis) as a
function of time (horizontal axis) for two anticorrelated, oscillating genes in a
synchronized culture. (B) ExpectedmRNA abundance using FISH (colored spots)
as a function of time for two anticorrelated, oscillating genes in a single cell.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1002422107 Silverman et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002422107/-/DCSupplemental/sfig01.pdf
http://www.pnas.org/cgi/data/1002422107/DCSupplemental/Supplemental_PDF#nameddest=st01
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002422107/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002422107/-/DCSupplemental/sfig02.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1002422107


joint empirical distribution for the mRNA counts derived from >
200 cells. It is clear that in both cases not all cells are labeled with
probes from either gene: One sees the blue corresponding to the
DAPI nuclear stain, but no red or green spots corresponding to
the labeled Cy3 or Cy3.5 DNA probes. When such spots appear,
the numbers are small: We rarely found more than about 40 spots
and more commonly found 10 or fewer. This result is entirely
consistentwith expectation, because there is no doubt that the cells
in this unsynchronized population growing at steady state in a
chemostat are nevertheless undergoing regular cell-division
cycles, with each cell at a different point in its cycle.
For the gene pairMCD1, POL30 (both expressed in S phase in

synchronized cultures), most cells that are labeled with one probe
are also labeled with the other, as is clear from the images and the
histogram. If we calculate a raw correlation coefficient, under-
standing that this calculation includes many cells that contain no
labeledmRNAs,we obtain a value of 0.75 (note range,−0.14, 0.98;
see discussion above) (Table 1). If we remove the zero-signal cells,
we arrive at the alternative estimate of 0.71. In both cases boot-
strapping P values are below 10−4. These results can be compared
with the overall correlation in the synchronized population of 0.86
(15), where expression noise interferes minimally with the signal.
Thesedata accordperfectly with our second expectation—namely,
that single cells from unsynchronized populations should contain
mRNAs of both genes if they are coexpressed in synchronized
populations.
For the gene pairs CLB2, POL30 and SUR7, POL30 (i.e., cases

inwhich coincidences are not expected, and the overall correlation
in synchronized populations is about −0.7), we find that cells with
abundant labeling of one of the mRNAs show essentially no
labeling of the other. Here the raw correlations are only weakly
negative (about−0.05, but close to theminimum possible of about
−0.2), but P values are statistically significant. Again, this result is
exactly in accord with the third expectation above—namely, that
single cells from unsynchronized populations should not contain
mRNAs of both genes when they are expressed at very different
times in synchronized populations. From these results using well-

characterized cell-cycle genes, we see what can be expected when
synchronized population data are compared with single-cell FISH
results: The range of correlation values is restricted by the mRNA
distributions featuring so many cells with no FISH signal in them.

Analysis of Coincident Expression Based on the Metabolic Cycle.
Fig. 3A andB show selected cells fromanunsynchronized culture
(growing slowly under phosphate limitation) labeled with probes
for genes GAS1 (encodes a beta-1,3-glucanosyltransferase) and
HXK2 (encodes hexokinase 2), which show coincident expression
in themetabolically synchronized cultures of Tu et al. (4). Fig. 3C
and D show selected cells in which the probes are directed to
HXK2 and CTS1 (encoding endochitinase), which show expres-
sion at different points in the metabolic cycle in synchronized
cells. (Note the equivalence of dye-swap results.) Histograms
corresponding to these four experiments are shown in Fig. 4, and
histograms for all gene pairs used in this study in are shown in Fig.
S3. The data here, as in the case for the genes we chose on the
basis of their periodic expression during the cell-division cycle,
are clearly consistent with expectations if the unsynchronized
cells are undergoing metabolic cycles. There are many cells that

Table 1. Cell-cycle gene correlation measured in single
asynchronous cells from glucose-limited chemostat cultures and
in synchronized populations

Gene pair
Synchronized
population

Single asynchronous cells

Range Full data
High
signal

MCD1, CLB2 −0.85 −0.073, 0.93 0.034 −0.42
MCD1,
POL30

0.86 −0.14, 0.98 0.75* 0.71*

CLB2, POL30 −0.77 −0.19, 0.92 −0.041† −0.2†

POL30, SUR7 −0.73 −0.17, 0.91 −0.048† −0.17†

Correlation-of-correlations 0.99 0.99†

Pairwise correlation between cell cycle–regulated genes in single,
unsynchronized cells and synchronized populations. Synchronized popula-
tion correlations were calculated using microarray data from cdc15-synchron-
ized cultures (15). The Range column lists the minimum and maximum
correlation coefficients obtainable given the mRNA count distributions from
FISH data. For each gene pair, the Pearson correlation across single cells was
calculated using FISH data from all cells (Full data) and from the subset of cells
with nonzero FISH signal (High signal).*, P ≤ 0.005; †, 0.005 < P ≤ 0.005–0.05.

Fig. 2. FISH of mRNA from genes periodically expressed during the stand-
ard cell-division cycle. Maximum projection (z dimension) composite image
from a portion of a single field in the Cy3, Cy3.5, and DAPI emission chan-
nels: SUR7 Cy 3.5 (red), POL30 Cy3 (green), and MCD1 Cy 3.5. DAPI (blue)
stains the nucleus. (Inset) The joint distribution is plotted as a heat-map
matrix plot. To improve the visibility while accurately representing the
dynamical range, the frequency counts were shifted by 1 and were log2

transformed.

GAS1%HXK2 GAS2%HXK2

HXK2 CTS1HSK2 CTS1

Fig. 3. FISH of mRNA from genes periodically expressed during the meta-
bolic cycle. Maximum projection as in Fig. 2. (Upper Left) GAS1 Cy3 (green),
HXK2 Cy3.5 (red). (Upper Right) Dye labels are reversed on these probes.
(Lower Left) CTS1 Cy3, HXK2 Cy3.5. (Lower Right) Dye labels are reversed.
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are totally unlabeled, many coincidences of labeling when genes
in a pair are coexpressed in synchronized cultures (4), and very
few coincidences of labeling when the genes in a pair are
expressed at different times in the synchronized cultures.
Table2 showsa summaryof theanalyzeddata for 22metabolically

cycling gene pairs (including the ones shown in Figs. 3 and 4), all
growing slowly in limiting phosphate. The analysis was done in the
same way as the analysis for the cell-division-cycle genes in Table 1.
Specifically, the correlation-of-correlations is 0.65. In addition, a
Wilcoxon rank-sum test comparing the single-cell correlations
between negatively and positively correlated gene pairs (14) is sig-
nificant (P = 0.002). These data are all clearly consistent with
expectations, requiring us to conclude that individual unsynchron-
ized cells growing slowly at steady state in a phosphate-limited
chemostat are undergoing ametabolic cycle that is qualitatively and
quantitatively similar to the cycle previously observed only in
synchronized cultures growing under glucose limitation.

The Metabolic Cycle in Unsynchronized Cells Is Independent of the
Nature of the Growth-Limiting Nutrient. We used phosphate limi-
tation in the investigations described above in part because we
thought it less likely that we would adventitiously inducemetabolic-
cycle synchrony in the cultures, which, as may be recalled, required
starvation and refeeding of glucose. Because gene expression based
on growth rate is independent of the identity of the limiting nutrient
(8), we believe that the limiting nutrient should not matter if our
hypothesis of an autonomous metabolic cycle is correct.
We assessed the expression patterns of five pairs of genes in

which the cells were drawn from unsynchronized populations
growing under glucose limitation at the same rate that we used
under phosphate limitation (compare Table 3 and the first five
rows of Table 2). Also shown in Table 3 is a comparison of the
correlation-of-correlations for glucose (0.84) and phosphate
(0.93). It is clear that unsynchronized cells display the metabolic
cycle under both growth regimes.
Finally, Fig. 5 summarizes graphically the relationship between

the FISH correlations observed in single unsynchronized cells and
the DNA microarray correlations observed in the synchronized
cultures of Tu et al. (4) and Kudlicki et al. (14).
Fig. 5A shows the relationship of the single-cell correlations to

the population correlations, comparing cell-cycle genes with the

synchronized cell-cycle and metabolic-cycle genes with the syn-
chronized metabolic cycle. Fig. 5B compares all the correlations
with the synchronized metabolic cycle: Here it is notable that the
cell-division-cycle genes are significantly less correlated. Fig. 5C
compares all the correlations with the synchronized cell-division
cycle, and here it is notable that the metabolic genes are not
correlated. These data fortify the conclusion that there is not a
one-to-one correspondence between these cycles.

Discussion
The experiments described in the previous sections provide strong
evidence that the periodic patterns of gene expression observed in
the metabolic cycle (4, 5) are an intrinsic feature of yeast growth
and are not dependent on the means used to achieve metabolic
synchronization. Although direct support for the generality of this
conclusion by these data across growth media and rates is limited
(two limiting nutrients at a single relatively slow growth rate were
studied with FISH) and also is limited even across genes (we
studied 22metabolically cycling gene pairs, all of which behaved as
expected), our expectation now should be that the metabolic cycle
likely underlies metabolism in a great variety, if not quite all,
growth conditions in which yeast cells grow exponentially. The
main reason for our confidence in the generality of cycling is the
connection between the metabolic cycle and growth rate.
We found that we could observe the gene-expression oscil-

lations directly equally well in cells growing in limited phosphate

A B

C D

Fig. 4. Joint and marginal distributions for gene pairs from the experiments
shown in Fig.3. The joint distribution for each gene pair is plotted as a heat-
map matrix plot (as in Fig. 2), and the corresponding marginal distributions
for each mRNA are plotted above and to the right of the heat-map plot.

Table 2. Metabolic-cycle gene correlation measured in single
asynchronous cells from phosphate-limited chemostat cultures
and in synchronized populations

Gene pair
Synchronized
population

Single asynchronous cells

Range Full data
High
signal

CTS1, SCW10 −0.73 −0.14, 0.98 −0.12* −0.37*
GAS1, HXK2 0.8 −0.53, 0.98 0.35* 0.3*
NOP1, SNU13 0.98 −0.63, 0.88 0.25* 0.17*
PFK26, SUR4 −0.84 −0.10, 0.79 −0.02 −0.38
HXK2, YGP1 −0.8 −0.098, 0.83 0.015 −0.22
CTP1, SNU13 0.96 −0.18, 0.98 0.15* −0.0027*
CTS1, HXK2 −0.76 −0.30, 0.94 −0.15* −0.32*
GAS1, SCW10 0.82 −0.18, 0.98 0.20* 0.073*
NOP58, NOP1 0.98 −0.75, 0.93 0.52* 0.38*
RKI1, NOP1 0.97 −0.57, 0.89 0.29* 0.14*
SCW10, HXK2 0.9 −0.17, 0.90 0.39* 0.11*
NOP1, CTP1 0.95 −0.65, 0.90 0.25* 0.18*
SUR4, UTR2 0.9 −0.16, 0.83 0.10* −0.48*
OM45, PFK26 0.88 −0.30, 0.85 0.12† −0.016†

CTP1, RKI1 0.89 −0.26, 0.85 0.057 −0.43
GAS1, YGP1 −0.82 −0.10, 0.65 −0.04 −0.081
UTR2, OM45 −0.75 −0.22, 0.89 0.042 −0.18
PFK26, UTR2 −0.75 −0.32, 0.80 0.05 −0.4
OM45, SUR4 −0.83 −0.38, 0.96 0.09 −0.089
SCW10,
OM45

−0.75 −0.26, 0.91 0.17 0.015

SCW10, YGP1 −0.8 −0.13, 0.98 0.11 −0.062
HXK2, OM45 −0.77 −0.38, 0.98 0.25 0.08
Correlation-of-correlations 0.65* 0.46†

Correlation of metabolic cycle–regulated genes in phosphate-limited che-
mostats. Synchronized population correlations were calculated using micro-
array data from metabolically synchronized, glucose-limited chemostat
cultures (4). The Range column lists the minimum and maximum correlation
coefficients obtainable given the mRNA count distributions from FISH data.
For each gene pair, the Pearson correlation across single cells was calculated
using FISH data from all cells (Full data) and from the subset of cells with
nonzero FISH signal (High signal). *, P ≤ 0.005; †, 0.005 < P ≤ 0.005–0.05.
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(and excess glucose) as in limited glucose. This result shows that
metabolic cycling is not dependent on carbon-source limitation,
even though virtually all previous observations of cycling in
synchronized cultures have been conducted under carbon limi-
tation [usually glucose, but also ethanol (21) or trehalose (22)].
Brauer et al. (8) suggested that the presence of the metabolic

cycle quite generally in unsynchronized yeast cells might account
for the remarkable relationship they discovered between the
expression of as much as 25% of all genes and the growth rate. To
correlate growth rate to metabolic cycling, one needs only to posit
that the phase(s) of themetabolic cycle are partitioned in a growth-
rate–dependent manner, such that the relative length of the
“oxidative” phase is greater at slower growth rates. Accepting this
relationship, we can see evidence for the metabolic cycle in all the

conditions studied by Brauer et al. (8) (i.e., six limiting nutrients
over a 7-fold range of growth rate, all with glucose as the carbon
source), over the entire range of the diauxic shift in batch cultures
(discussed in refs. 7, 8, and 23), during heat shock and a great
variety of other stress responses in chemostats and batch cultures
(24), by implication in all the data from ref. 25, and in cytoplasmic
petite strains whose metabolism is confined to fermentation of
glucose (24). Finally, apparently spontaneous synchronization of
continuous cultures has been observed often, usually with glucose
as a carbon source but also using ethanol (21) or trehalose (22).
Because under most conditions there seems to be an autonomous

metabolic cycle in individual unsynchronized yeast cells, the cycles of
starvation andgrowth, rather than cyclingper se,must serve to induce
synchrony in populations. Likewise, communication among cells or
between cells and the environment need be invoked only for syn-
chronization and not for cycling per se. On the other hand, the
remarkable precision of the synchrony and its relationship to the
instantaneous rate of growth must involve intracellular events and
communication, the basis of which remains obscure. What we have
learned is only that the apparently disparatephenomenaofmetabolic
cycling and growth-rate correlation of gene expression must have a
common mechanistic basis. Studies that involve perturbations in
synchronized cultures (e.g., refs. 4, 22, 26) must distinguish whether
the effects under study are affecting synchronization or are affecting
the underlying cycling itself.
The suggestions of others (4–6, 27) regarding the evolutionary

origins of themetabolic cycle all predicted that this cycle would be,
as we have shown, an intrinsic feature of yeast cellular metabolism
under virtually any circumstance. These same groups have pro-
vided some evidence that the cell-division cycle is gated by the
metabolic cycle to avoid certain metabolic activities during DNA
replication as well as evidence that mutation rates are increased
when replication is allowed to occur despite these metabolic
activities. It nevertheless should be recalled that we, as well as
these authors, have observed that there is not a one-to-one cor-
relation between the metabolic and cell-division cycles.
In general the idea that oxidative metabolism might be limited

during DNA replication suggests derivation of energy from the
glycolysis of stored carbohydrate, namely glycogen and/or, in the
case of fungi, trehalose. Boer et al. (28) found that trehalose is one
of only two intracellular metabolites (of more than 150 surveyed)
that accumulate preferentially at slow growth rates. Given the
connection between growth rate and the metabolic cycle (8), we
suggest that trehalose accumulates cyclically to provide internal
fermentable substrate during the phases of themetabolic cycle that
do not involve reactive oxygen metabolism. The trehalose level
might even be part of the system that gates entry into S phase of the
cell-division cycle (29). The observation that growth on trehalose
as the sole carbon source produces spontaneous metabolic cycling
in batch cultures (22) may be relevant in this regard, as are the
older observations that trehalose is metabolized preferentially
during S phase of the cell-division cycle (30, 31).
The methods we have assembled to study metabolic cycling in

single cells have made it possible to design relatively simple assays
formetabolic cycling under virtually any conditions. The apparently
ancient origin (32) of metabolic cycling strongly suggests that these
methods can be used to discover metabolic cycling in other eukar-
yotes, including animal cells and tissues. Such studies may involve
additional analytical and statistical theory and development, some
of which are currently in preparation for publication separately.

Methods
Growth Conditions. Diploid, S288c heritage cells, DBY12007, MATa/MATα,
GAL2/GAL2, HAP1/HAP1 were used for all experiments. Cells were grown to
steady state at a growth rate of 0.1 volumes per hour in phosphate-limited
(20 mg/L) or glucose-limited (8 mg/L) chemostat medium (8) at 30 °C estab-
lished in 500-mL vessels (Sixfors; Infors AG) containing 300 mL of culture.
Pregrowth in batch phase was initiated from a 1/100 dilution of cells grown in

Table 3. Metabolic-cycle gene correlation measured in single
asynchronous cells from glucose-limited chemostat cultures and
in synchronized populations

Gene pair
Synchronized
population

Single asynchronous cells

Range Full data
High
signal

CTS1, SCW10 −0.73 −0.1, 0.94 −0.08* −0.24*
GAS1, HXK2 0.80 −0.22, 0.99 0.42* 0.3*
NOP1,
SNU13

0.98 −0.34, 0.95 0.31* 0.16*

PFK26, SUR4 −0.84 −0.16, 0.98 0.18 0.016
HXK2, YGP1 −0.80 −0.15, 0.97 0.02 −0.13
Correlation-of-correlations
(glucose-limited)

0.84 0.84

Correlation-of-correlations
(phosphate-limited)

0.93 0.95

Correlation of metabolic cycle–regulated genes in glucose-limited chemo-
stats. These gene pairs also were measured in phosphate-limited chemostats
(first five rows of Table 2). For comparison, we show the correlation-of-
correlations for these pairs under glucose limitation and under phosphate
limitation. The Range column lists the minimum and maximum correlation
coefficients obtainable given the mRNA count distributions from FISH data.
For each gene pair, the Pearson correlation across single cells was calculated
using FISH data from all cells (Full data) and from the subset of cells with
nonzero FISH signal (High signal). *, P ≤ 0.005.
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Fig. 5. Correspondence of single-cell and synchronized population corre-
lation coefficients (Full Data). (A) Metabolic (MC) single-cell correlations
(black, phosphate; blue, glucose) compared with metabolic population cor-
relations (4) and cell division (CC; red) compared with cell-division pop-
ulations (15). (B) MC and CC compared with metabolic population
correlations. (C) MC and CC compared with cell-division population corre-
lations. Points with P > 0.05 are shown in muted colors.
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the same medium. Continuous culture was initiated during exponential
growth to avoid a starvation regimen that can induce synchronous metabolic
cycling of the culture.

Fluorescence in Situ Hybridization. FISH was performed as described by Zen-
klusen et al. (11) with slight modifications for chemostat-grown cells as descri-
bed in SI Text and www.princeton.edu/genomics/botstein/protocols/.

Image Acquisition. All images were taken using an IX81 inverted fluorescence
microscope (Olympus) with amotorized stage (Prior), PlanApo TIRFM 100× oil
objective with a numerical aperture of 1.45, X-Cite Exacte light source
(EXFO), IX2-SHA motorized shutter, and ORCA II ER Mono CCD camera
(Hamamatsu). Images were acquired using Slidebook 5.0 digital image
acquisition software (Intelligent Imaging Innovations). Twenty-five images
were taken with a 0.2-μm step size using filter sets SP100v2 (DAPI), SP102v2
(Cy3), SP103v2 (Cy3.5), and SP104v2 (Cy5) from Chroma Technology.

Image Processing. Cell boundaries were determined using watershed seg-
mentation of the DAPI image (33, 34). Spot locations were identified using top-

hat transformation and contrast analysis (35). Spot intensities were measured
using a Gaussian mask approach (36). The algorithms are described in SI Text.

Correlation Quantification. We used the Pearson correlation coefficient to
quantify expression correlation in single cells. We computed the correlation
using both the full data set (“Full data”) and the subset of cells with nonzero
FISH signal (“High-signal”). Correlation P values were estimated by boot-
strap resampling with replacement. Pearson correlations calculated using
discrete data from single cells are not necessarily numerically identical to
those calculated using continuous data from synchronized populations (13).
Therefore, to compare our vector of correlations with the vector of corre-
lations published by Kudlicki et al. (14), we computed the Pearson correla-
tion between the two correlation vectors and estimated the P values by
bootstrap resampling without replacement.
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